首页> 外文期刊>Computers & mathematics with applications >Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method
【24h】

Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method

机译:基于两阶段语言划分方法的模糊时间序列预测每日臭氧浓度最大值

获取原文
获取原文并翻译 | 示例

摘要

Air pollution is a result of global warming, greenhouse effects, and acid rain. Especially in highly industrialization areas, air pollution has become a major environmental issue. Poor air quality has both acute and chronic effects on human health. The detrimental effects of ambient ozone on human health and the Earth's ecosystem continue to be a national concern in Taiwan. The pollutant standard index (PSI) has been adopted to assess the degree of air pollution in Taiwan. The standardized daily air quality report provides a simple number on a scale of 0 to 500 related to the health effects of air quality levels. The report focuses on health and the current PSI subindices to reflect measured ozone (O_3) concentrations. Therefore, this study uses the O_3 attribute to evaluate air quality. In an effort to forecast daily maximum ozone concentrations, many researchers have developed daily ozone forecasting models. However, this continuing worldwide environmental problem suggests the need for more accurate models. This paper proposes two new fuzzy time series based on a two-stage linguistic partition method to predict air quality with daily maximum O_3 concentration: Stage 1, use the fuzzy time series based on the cumulative probability distribution approach (CPDA) to partition the universe of discourse into seven intervals; Stage 2, use two linguistic partition methods, the CPDA and the uniform discretion method (UDM), to repartition each interval into three subintervals. To verify the forecasting performance of the proposed methods in detail, the practical collected data is used as and evaluating dataset; five other methodologies (AR, MA, ARMA, Chen's and Yu's) are used as comparison models. The proposed methods both show a greatly improved performance in daily maximal ozone concentration prediction accuracy compared with the other models.
机译:空气污染是全球变暖,温室效应和酸雨的结果。特别是在高度工业化的地区,空气污染已成为主要的环境问题。空气质量差对人体健康有急性和慢性影响。在台湾,环境臭氧对人类健康和地球生态系统的有害影响仍然是全国关注的问题。台湾采用污染物标准指数(PSI)评估空气污染程度。标准化的每日空气质量报告提供了一个简单的数字,范围从0到500,与空气质量水平对健康的影响有关。该报告重点关注健康状况和当前的PSI子指数,以反映测得的臭氧(O_3)浓度。因此,本研究使用O_3属性来评估空气质量。为了预测每日最大臭氧浓度,许多研究人员开发了每日臭氧预测模型。但是,这一持续存在的全球环境问题表明需要更准确的模型。本文基于两阶段语言划分方法,提出了两个新的模糊时间序列,以预测每日最大O_3浓度的空气质量:第1阶段,使用基于累积概率分布方法(CPDA)的模糊时间序列来划分空气质量分成七个间隔进行讨论;第2阶段,使用两种语言分区方法,即CPDA和统一判断方法(UDM),将每个间隔重新划分为三个子间隔。为了详细验证所提方法的预测性能,将实际收集的数据用作评价数据集。使用其他五种方法(AR,MA,ARMA,Chen和Yu)作为比较模型。与其他模型相比,所提出的方法均显示出在每日最大臭氧浓度预测精度方面的性能大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号