首页> 外文期刊>Computers & mathematics with applications >Complexity of counting cycles using zeons
【24h】

Complexity of counting cycles using zeons

机译:使用zeon计数周期的复杂性

获取原文
获取原文并翻译 | 示例

摘要

Nilpotent adjacency matrix methods are employed to count k-cycles in simple graphs on n vertices for any k≤ n. The worst-case time complexity of counting k-cycles in an n-vertex simple graph is shown to be  (n~(x+1)2~n), where α ≤ 3 is the exponent representing the complexity of matrix multiplication. When k is fixed, the counting of all fc-cycles in an n-vertex graph is of time complexity O(n~(α+k-1)). Letting Ω = (~n_2), the average-case time complexity of counting fc-cycles in an n-vertex, e-edge graph where e < q (~Ω_k-1) for fixed 0 < q < 1 is found to be O(n~4(1 + q)~n). The storage complexity of the approach detailed herein is O(n~2 2~n). For reference, experimental results detailing computation times (in seconds) are included alongside similar computations performed with algorithms based on the approaches of Bax and Tarjan.
机译:对于任何k≤n,采用幂等邻接矩阵方法对n个顶点上的简单图中的k个周期进行计数。在n个顶点简单图中对k个周期进行计数的最坏情况下的时间复杂度显示为(n〜(x + 1)2〜n),其中α≤3是代表矩阵乘法的复杂度的指数。当k固定时,n个顶点图中所有fc周期的计数具有时间复杂度O(n〜(α+ k-1))。令Ω=(〜n_2),发现在固定e

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号