首页> 外文期刊>Computers & mathematics with applications >A symmetric rank-one method based on extra updating techniques for unconstrained optimization
【24h】

A symmetric rank-one method based on extra updating techniques for unconstrained optimization

机译:基于额外更新技术的对称秩一方法无约束优化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new symmetric rank-one (SRI) method for the solution of unconstrained optimization problems. The proposed method involves an algorithm in which the usual SRI Hessian is updated a number of times in a way to be specified in some iterations, to improve the performance of the Hessian approximation.In particular, we discuss how to consider a criterion for indicating at each iteration whether it is necessary to employ extra updates. However it is well known that there are some theoretical difficulties when applying the SRI update. Even for a current positive definite Hessian approximation, it is possible that the SRI update may not be defined or the SRI update may not preserve positive definiteness at some iterations. We then employ a restarting procedure that guarantees that updated matrices will be well-defined while preserving positive definiteness of updates. Numerical results support these theoretical considerations. They show that the implementation of the SRI method using extra updating techniques improves the performance of the SRI method substantially for a number of test problems from the literature.
机译:在本文中,我们提出了一种新的对称秩一(SRI)方法来解决无约束优化问题。所提出的方法涉及一种算法,该算法将常规SRI Hessian进行多次更新以指定某些迭代的方式,以提高Hessian逼近的性能。特别是,我们讨论了如何考虑用于指示每次迭代是否有必要使用额外的更新。但是,众所周知,应用SRI更新时存在一些理论上的困难。即使对于当前的正定Hessian逼近,也可能未定义SRI更新,或者在某些迭代中SRI更新可能未保留正定性。然后,我们采用重新启动过程,以确保在保持更新的正定性的同时,可以很好地定义更新的矩阵。数值结果支持了这些理论考虑。他们表明,使用额外的更新技术来实施SRI方法,对于文献中的许多测试问题,实质上可以提高SRI方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号