首页> 外文期刊>Computers & mathematics with applications >A novel HMM-based learning framework for improving dynamic wireless push system performance
【24h】

A novel HMM-based learning framework for improving dynamic wireless push system performance

机译:一种新颖的基于HMM的学习框架,可提高动态无线推送系统的性能

获取原文
获取原文并翻译 | 示例

摘要

A new machine learning framework is introduced in this paper, based on the hidden Markov model (HMM), designed to provide scheduling in dynamic wireless push systems. In realistic wireless systems, the clients' intentions change dynamically; hence a cognitive scheduling scheme is needed to estimate the desirability of the connected clients. The proposed scheduling scheme is enhanced with self-organized HMMs, supporting the network with an estimated expectation of the clients' intentions, since the system's environment characteristics alter dynamically and the base station (server side) has no a priori knowledge of such changes. Compared to the original pure scheme, the proposed machine learning framework succeeds in predicting the clients' information desires and overcomes the limitation of the original static scheme, in terms of mean delay and system efficiency.
机译:本文介绍了一种基于隐马尔可夫模型(HMM)的新机器学习框架,旨在为动态无线推送系统提供调度。在现实的无线系统中,客户的意图会动态变化。因此,需要一种认知调度方案来估计所连接客户端的需求。由于系统的环境特征是动态变化的,并且基站(服务器端)没有这种变化的先验知识,因此利用自组织的HMM增强了所提出的调度方案,从而以预期的客户意图支持网络。与原始的纯方案相比,提出的机器学习框架在平均延迟和系统效率方面成功地预测了客户的信息需求,并克服了原始静态方案的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号