首页> 外文期刊>Computers & mathematics with applications >Gas-kinetic numerical study of complex flow problems covering various flow regimes
【24h】

Gas-kinetic numerical study of complex flow problems covering various flow regimes

机译:涵盖各种流态的复杂流动问题的气动力学数值研究

获取原文
获取原文并翻译 | 示例

摘要

The Boltzmann simplified velocity distribution function equation, as adapted to various flow regimes, is described on the basis of the Boltzmann-Shakhov model from the kinetic theory of gases in this study. The discrete velocity ordinate method of gas-kinetic theory is studied and applied to simulate complex multi-scale flows. On the basis of using the uncoupling technique on molecular movements and collisions in the DSMC method, the gas-kinetic finite difference scheme is constructed by extending and applying the unsteady time-splitting method from computational fluid dynamics, which directly solves the discrete velocity distribution functions. The Gauss-type discrete velocity numerical quadrature technique for flows with different Mach numbers is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established for studying the three-dimensional complex flows with high Mach numbers from rarefied transition to continuum regimes. On the basis of the parallel characteristics of the respective independent discrete velocity points in the discretized velocity space, a parallel strategy suitable for the gas-kinetic numerical method is investigated and, then, the HPF (High Performance Fortran) parallel programming software is developed for simulating gas dynamical problems covering the full spectrum of flow regimes. To illustrate the feasibility of the present gas-kinetic numerical method and simulate gas transport phenomena covering various flow regimes, the gas flows around three-dimensional spheres and spacecraft-like shapes with different Knudsen numbers and Mach numbers are investigated to validate the accuracy of the numerical methods through HPF parallel computing. The computational results determine the flow fields in high resolution and agree well with the theoretical and experimental data. This computing, in practice, has confirmed that the present gas-kinetic algorithm probably provides a promising approach for resolving hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view for solving the mesoscopic Boltzmann model equation.
机译:在这项研究中,基于气体的Boltzmann-Shakhov模型,描述了适用于各种流动状态的Boltzmann简化速度分布函数方程。研究了气体动力学理论的离散速度纵坐标方法,并将其应用于模拟复杂的多尺度流。在DSMC方法中将解离技术用于分子运动和碰撞的基础上,通过从计算流体力学中扩展和应用非稳态时间分裂方法,构造了气体动力学有限差分方案,直接解决了离散速度分布函数。为了评估物理空间中的宏观流动参数,开发了高斯型离散速度数值正交技术,用于处理不同马赫数的流动。结果,建立了气体动力学数值算法,用于研究从稀疏过渡到连续体状态具有高马赫数的三维复杂流动。基于离散速度空间中各个独立离散速度点的并行特性,研究了适用于气体动力学数值方法的并行策略,然后开发了HPF(高性能Fortran)并行编程软件模拟涵盖整个流态的气体动力学问题。为了说明本发明的气体动力学数值方法的可行性并模拟涵盖各种流态的气体传输现象,研究了三维球和类似Knudsen数和Mach数的类似航天器形状的气体流动,以验证该方法的准确性。通过HPF并行计算的数值方法。计算结果确定了高分辨率的流场,与理论和实验数据吻合良好。该计算在实践中已经证实,当前的气体动力学算法可能提供了一种有前途的方法,从气体动力学的角度来解决介观的Boltzmann模型方程式,从而解决了具有完整流态谱的高超音速空气动力学问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号