首页> 外文期刊>Computers & mathematics with applications >Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
【24h】

Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain

机译:有限域中多项式时间分数阶扩散波/扩散方程的解析解

获取原文
获取原文并翻译 | 示例

摘要

Multi-term time-fractional differential equations have been used for describing important physical phenomena. However, studies of the multi-term time-fractional partial differential equations with three kinds of nonhomogeneous boundary conditions are still limited. In this paper, a method of separating variables is used to solve the multi-term time-fractional diffusion-wave equation and the multi-term time-fractional diffusion equation in a finite domain. In the two equations, the time-fractional derivative is defined in the Caputo sense. We discuss and derive the analytical solutions of the two equations with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin conditions, respectively.
机译:多项式时间分数微分方程已用于描述重要的物理现象。但是,对于具有三种非齐次边界条件的多项时间分数阶偏微分方程的研究仍然有限。本文采用一种分离变量的方法,在有限域内求解了多项式时间分数阶扩散波方程和多项式时间分数阶扩散波方程。在两个方程式中,时间分数导数定义为Caputo。我们讨论并推导了分别具有Dirichlet,Neumann和Robin条件三种非均匀边界条件的两个方程的解析解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号