首页> 外文期刊>Computers & mathematics with applications >Invariant feature extraction for 3D model retrieval: An adaptive approach using Euclidean and topological metrics
【24h】

Invariant feature extraction for 3D model retrieval: An adaptive approach using Euclidean and topological metrics

机译:用于3D模型检索的不变特征提取:使用欧几里得和拓扑度量的自适应方法

获取原文
获取原文并翻译 | 示例

摘要

With the fast development of 3D model construction and widespread popularity of 3D graphic engines, more applications employ 3D geometric models to provide an interactive environment. As the number of 3D models increases, some 3D model retrieval systems have been proposed for indexing and matching these models. An important issue in a retrieval system is feature extraction. An efficient and invariant feature is a global shape distribution that collects some geometric properties of a model. The D2 shape descriptor by Osada et al. is a one-dimensional histogram of Euclidean distances between two random points. Although the D2 is effective for some cases, it changes when the model deforms. We propose two shape descriptors in this paper: GD, which is the topological metric, and ASF, which combines both Euclidean and topological metrics. The topological metric is an invariant deformation factor. The two features are also robust against common geometric processing, including scaling, rotation, resampling, compression, and remeshing. In experiments, we implement these methods and confirm their feasibility.
机译:随着3D模型构造的快速发展和3D图形引擎的广泛普及,更多的应用程序使用3D几何模型来提供交互式环境。随着3D模型数量的增加,已经提出了一些3D模型检索系统来索引和匹配这些模型。检索系统中的一个重要问题是特征提取。一个高效且不变的特征是一种全局形状分布,它收集了模型的某些几何特性。 Osada等人的D2形状描述符。是两个随机点之间的欧几里得距离的一维直方图。尽管D2在某些情况下有效,但在模型变形时会更改。在本文中,我们提出了两个形状描述符:GD是拓扑度量,而ASF则是结合了欧几里得度量和拓扑度量。拓扑度量是不变的变形因子。这两个功能还可以抵抗常见的几何处理,包括缩放,旋转,重采样,压缩和重新网格化。在实验中,我们实现了这些方法并确认了它们的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号