首页> 外文期刊>Computers & mathematics with applications >Latent topic based multi-instance learning method for localized content-based image retrieval
【24h】

Latent topic based multi-instance learning method for localized content-based image retrieval

机译:基于潜在主题的多实例学习方法用于基于内容的本地化图像检索

获取原文
获取原文并翻译 | 示例

摘要

Focusing on the problem of localized content-based image retrieval, based on probabilistic latent semantic analysis (PLSA) and transductive support vector machine (TSVM), a novel semi-supervised multi-instance learning (SSMIL) algorithm is proposed, where a bag corresponds to an image and an instance corresponds to the low-level visual features of a segmented region. In order to convert an MIL problem into a standard supervised learning problem, first, all the instances in training bags be clustered by K-Means method, and regards each cluster center as "visual-word" to build a visual vocabulary. Second, according to the distance between "visual-word" and instance, a fuzzy membership function is defined to establish a fuzzy term-document matrix, then use PLSA method to obtain bag's (image's) latent topic models, which can convert every bag to a single sample. Finally, in order to use the unlabeled images to improve retrieval accuracy, using semi-supervised TSVM to train classifiers. Experimental results on the COREL data sets show that the proposed method, named PLSA-SSMIL, is robust, and its performance is superior to other key existing MIL algorithms.
机译:针对局部基于内容的图像检索问题,基于概率潜在语义分析(PLSA)和转导支持向量机(TSVM),提出了一种新颖的半监督多实例学习(SSMIL)算法,其中包对应对应于图像,实例对应于分割区域的低级视觉特征。为了将MIL问题转化为标准的监督学习问题,首先,将训练包中的所有实例都通过K-Means方法进行聚类,并将每个聚类中心视为“视觉单词”,以建立视觉词汇。其次,根据“视觉词”与实例之间的距离,定义了模糊隶属度函数,建立了模糊的词-文档矩阵,然后使用PLSA方法获得了购物袋(图像)的潜在主题模型,可以将每个购物袋转换为一个样品。最后,为了使用未标记图像来提高检索精度,请使用半监督TSVM来训练分类器。在COREL数据集上的实验结果表明,所提出的名为PLSA-SSMIL的方法是鲁棒的,并且其性能优于现有的其他关键MIL算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号