首页> 外文期刊>Computers & mathematics with applications >Computational performance of basic state reduction based dynamic programming algorithms for bi-objective 0-1 knapsack problems
【24h】

Computational performance of basic state reduction based dynamic programming algorithms for bi-objective 0-1 knapsack problems

机译:基于基本状态约简的动态规划算法对双目标0-1背包问题的计算性能

获取原文
获取原文并翻译 | 示例

摘要

This paper studies a group of basic state reduction based dynamic programming (DP) algorithms for the multi-objective 0-1 knapsack problem (MKP), which are related to the backward reduced-state DP space (BRDS) and forward reduced-state DP space (FRDS). The BRDS is widely ignored in the literature because it imposes disadvantage for the single objective knapsack problem (KP) in terms of memory requirements. The FRDS based DP algorithm in a general sense is related to state dominance checking, which can be time consuming for the MKP while it can be done efficiently for the KP. Consequently, no algorithm purely based on the FRDS with state dominance checking has ever been developed for the MKP. In this paper, we attempt to get some insights into the state reduction techniques efficient to the MKP. We first propose an FRDS based algorithm with a local state dominance checking for the MKP. Then we evaluate the relative advantage of the BRDS and FRDS based algorithms by analyzing their computational time and memory requirements for the MKP. Finally different combinations of the BRDS and FRDS based algorithms are developed on this basis. Numerical experiments based on the bi-objective KP instances are conducted to compare systematically between these algorithms and the recently developed BRDS based DP algorithm as well as the existing FRDS based DP algorithm without state dominance checking.
机译:本文研究了针对多目标0-1背包问题(MKP)的一组基于基本状态约简的动态规划(DP)算法,该算法与后向简化状态DP空间(BRDS)和前向简化状态DP空间有关空间(FRDS)。 BRDS在文献中被广泛忽略,因为它在内存需求方面给单目标背包问题(KP)带来了不利条件。一般而言,基于FRDS的DP算法与状态优势检查有关,这对于MKP可能是耗时的,而对于KP则可以高效地完成。因此,对于MKP,尚未开发出完全基于具有状态支配性检查的FRDS的算法。在本文中,我们试图获得对MKP有效的状态减少技术的一些见解。我们首先提出一种基于FRDS的算法,该算法具有针对MKP的本地状态优势检查。然后,我们通过分析基于MDS的计算时间和内存需求,评估基于BRDS和FRDS的算法的相对优势。最后,在此基础上开发了基于BRDS和FRDS的算法的不同组合。进行了基于双目标KP实例的数值实验,系统地比较了这些算法与最近开发的基于BRDS的DP算法以及现有的基于FRDS的DP算法而无需进行状态优势检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号