首页> 外文期刊>Computers & mathematics with applications >Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability
【24h】

Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability

机译:神经元变异性建模中奇摄动微分方程的数值研究

获取原文
获取原文并翻译 | 示例

摘要

The objective of this paper is to present a numerical study of a class of boundary value problems of singularly perturbed differential difference equations (SPDDE) which arise in computational neuroscience in particular in the modeling of neuronal variability. The mathematical modeling of the determination of the expected time for the generation of action potential in the nerve cells by random synaptic inputs in dendrites includes a general boundary-value problem for singularly perturbed differential difference equation with shifts. The problem considered in this paper exhibit turning point behavior which add to the complexity in the construction of numerical approximation to the solution of the problem as well as in obtaining theoretical estimates on the solution. Exponentially fitted finite difference scheme based on Il'in-Allen-Southwell fitting is used on a specially designed mesh. Some numerical examples are given to validate convergence and computational efficiency of the proposed numerical scheme. Effect of the shifts on the layer structure is illuminated for the considered examples.
机译:本文的目的是对一类奇异摄动的差分方程(SPDDE)的边值问题进行数值研究,该奇异摄动的差分方程在计算神经科学中,特别是在神经元变异性建模中出现。确定树突中随机突触输入在神经细胞中产生动作电位的预期时间的数学模型包括一个奇异摄动带位移的微分差分方程的一般边值问题。本文所考虑的问题表现出转折点行为,这增加了问题近似解的数值近似构造以及获得该解的理论估计的复杂性。在特殊设计的网格上使用基于Il'in-Allen-Southwell拟合的指数拟合有限差分方案。通过数值算例验证了所提出数值方案的收敛性和计算效率。对于所考虑的示例,阐明了移位对层结构的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号