首页> 外文期刊>Computers, Materials & Continua >Automatic Terrain Debris Recognition Network Based on 3D Remote Sensing Data
【24h】

Automatic Terrain Debris Recognition Network Based on 3D Remote Sensing Data

机译:基于3D遥感数据的自动地形碎片识别网络

获取原文
获取原文并翻译 | 示例

摘要

Although predecessors have made great contributions to the semantic segmentation of 3D indoor scenes, there still exist some challenges in the debris recognition of terrain data. Compared with hundreds of thousands of indoor point clouds, the amount of terrain point cloud is up to millions. Apart from that, terrain point cloud data obtained from remote sensing is measured in meters, but the indoor scene is measured in centimeters. In this case, the terrain debris obtained from remote sensing mapping only have dozens of points, which means that sufficient training information cannot be obtained only through the convolution of points. In this paper, we build multi-attribute descriptors containing geometric information and color information to better describe the information in low-precision terrain debris. Therefore, our process is aimed at the multi-attribute descriptors of each point rather than the point. On this basis, an unsupervised classification algorithm is proposed to divide the point cloud into several terrain areas, and regard each area as a graph vertex named super point to form the graph structure, thus effectively reducing the number of the terrain point cloud from millions to hundreds. Then we proposed a graph convolution network by employing PointNet for graph embedding and recurrent gated graph convolutional network for classification. Our experiments show that the terrain point cloud can reduce the amount of data from millions to hundreds through the super point graph based on multi-attribute descriptor and our accuracy reached 91.74% and the IoU reached 94.08%, both of which were significantly better than the current methods such as SEGCloud (Acc: 88.63%, IoU: 89.29%) and PointCNN (Acc: 86.35, IoU: 87.26).
机译:虽然前人对3D室内场景的语义分割作出了巨大贡献,但仍然存在对地形数据的碎片识别的一些挑战。与数十万室内点云相比,地形点云的数量达到数百万。除此之外,从遥感中获得的地形点云数据以米为单位测量,但室内场景以厘米为单位测量。在这种情况下,从遥感映射获得的地形碎片仅具有数十个点,这意味着只能通过点的卷积来获得足够的训练信息。在本文中,我们构建了包含几何信息和颜色信息的多属性描述符,以更好地描述低精度地形碎片中的信息。因此,我们的进程旨在针对每个点的多属性描述符而不是该点。在此基础上,提出了一种无监督的分类算法将点云分成几个地形区域,并将每个区域视为名为Super Point的图形顶点以形成图形结构,从而有效地减少了从数百万到的地形点云的数量。数百。然后,我们通过使用PileNet进行图形嵌入和复制门控图卷积网络来提出图表卷积网络以进行分类。我们的实验表明,基于多属性描述符的超点图,我们的实验表明,基于多属性描述符的超点图,我们的准确性达到91.74%,IOO达到94.08%,这两者均明显优于94.08%目前的方法如SEGCLOUD(ACC:88.63%,IOU:89.29%)和POINTCNN(ACC:86.35,iou:87.26)。

著录项

  • 来源
    《Computers, Materials & Continua》 |2020年第1期|579-596|共18页
  • 作者单位

    College of Information Engineering Northwest A&F University Yangling 712100 China;

    College of Information Engineering Northwest A&F University Yangling 712100 China Key Laboratory of Agricultural Internet of Things Ministry of Agriculture and Rural Affairs Yangling 712100 China;

    College of Information Engineering Northwest A&F University Yangling 712100 China;

    College of Water Resources and Architectural Engineering Northwest A&F University Yangling 712100 China;

    College of Information Engineering Northwest A&F University Yangling 712100 China;

    College of Information Engineering Northwest A&F University Yangling 712100 China;

    School of Science and Technology Nottingham Trent University Nottingham NG118NS UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semantic segmentation; low-precision point cloud; large-scale terrain; debris recognition;

    机译:语义细分;低精度点云;大型地形;碎片认可;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号