首页> 外文期刊>Computers, Materials & Continua >A Privacy-Preserving Algorithm for Clinical Decision-Support Systems Using Random Forest
【24h】

A Privacy-Preserving Algorithm for Clinical Decision-Support Systems Using Random Forest

机译:使用随机森林的临床决策支持系统的隐私保护算法

获取原文
获取原文并翻译 | 示例

摘要

Clinical decision-support systems are technology-based tools that help healthcare providers enhance the quality of their services to satisfy their patients and earn their trust. These systems are used to improve physicians' diagnostic processes in terms of speed and accuracy. Using data-mining techniques, a clinical decision support system builds a classification model from hospital's dataset for diagnosing new patients using their symptoms. In this work, we propose a privacy-preserving clinical decision-support system that uses a privacy-preserving random forest algorithm to diagnose new symptoms without disclosing patients' information and exposing them to cyber and network attacks. Solving the same problem with a different methodology, the simulation results show that the proposed algorithm outperforms previous work by removing unnecessary attributes and avoiding cryptography algorithms. Moreover, our model is validated against the privacy requirements of the hospitals' datasets and votes, and patients' diagnosed symptoms.
机译:临床决策支持系统是基于技术的工具,可以帮助医疗保健提供者提高服务质量,以使他们的患者满意并赢得他们的信任。这些系统用于在速度和准确性方面改善医师的诊断过程。临床决策支持系统使用数据挖掘技术,从医院的数据集中构建分类模型,以便根据新患者的症状进行诊断。在这项工作中,我们提出了一种保护隐私的临床决策支持系统,该系统使用保护隐私的随机森林算法来诊断新症状,而不会泄露患者的信息并使他们遭受网络和网络攻击。通过不同的方法解决相同的问题,仿真结果表明,该算法通过去除不必要的属性并避免使用加密算法,从而优于以前的工作。此外,我们的模型针对医院数据集和投票的隐私要求以及患者的诊断症状进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号