首页> 外文期刊>Computers, Materials & Continua >ia-PNCC: Noise Processing Method for Underwater Target Recognition Convolutional Neural Network
【24h】

ia-PNCC: Noise Processing Method for Underwater Target Recognition Convolutional Neural Network

机译:ia-PNCC:水下目标识别卷积神经网络的噪声处理方法

获取原文
获取原文并翻译 | 示例

摘要

Underwater target recognition is a key technology for underwater acoustic countermeasure. How to classify and recognize underwater targets according to the noise information of underwater targets has been a hot topic in the field of underwater acoustic signals. In this paper, the deep learning model is applied to underwater target recognition. Improved anti-noise Power-Normalized Cepstral Coefficients (ia-PNCC) is proposed, based on PNCC applied to underwater noises. Multitaper and normalized Gammatone filter banks are applied to improve the anti-noise capacity. The method is combined with a convolutional neural network in order to recognize the underwater target. Experiment results show that the acoustic feature presented by ia-PNCC has lower noise and are well-suited to underwater target recognition using a convolutional neural network. Compared with the combination of convolutional neural network with single acoustic feature, such as MFCC (Mel-scale Frequency Cepstral Coefficients) or LPCC (Linear Prediction Cepstral Coefficients), the combination of the ia-PNCC with a convolutional neural network offers better accuracy for underwater target recognition.
机译:水下目标识别是水下声学对策的关键技术。如何根据水下目标的噪声信息对水下目标进行分类和识别一直是水下声信号领域的热门话题。本文将深度学习模型应用于水下目标识别。基于应用于水下噪声的PNCC,提出了一种改进的抗噪功率归一化倒谱系数(ia-PNCC)。应用多锥度和归一化的Gammatone滤波器组以提高抗噪能力。该方法与卷积神经网络结合以识别水下目标。实验结果表明,ia-PNCC呈现的声学特征噪声较低,非常适合使用卷积神经网络进行水下目标识别。与具有MFCC(梅尔尺度频率倒谱系数)或LPCC(线性预测倒谱系数)的单一声学特征的卷积神经网络组合相比,ia-PNCC与卷积神经网络的组合可为水下提供更好的精度目标识别。

著录项

  • 来源
    《Computers, Materials & Continua》 |2019年第1期|169-181|共13页
  • 作者单位

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China|Heilongjiang Univ Sci & Technol, Coll Comp & Informat Engn, Harbin 150022, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China;

    Georgia Southern Univ, Coll Engn & Comp, Statesboro, GA 30458 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Noise processing; underwater target recognition; convolutional neural network;

    机译:噪声处理水下目标识别卷积神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号