首页> 外文期刊>Computers & Industrial Engineering >Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network
【24h】

Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network

机译:共享物流网络中多阶段资源均衡问题的多目标人工蜂群算法

获取原文
获取原文并翻译 | 示例

摘要

Multi-stage resource leveling problem in sharing logistics network is a multi-objective optimization problem, which is strongly non-deterministic polynomial hard in open loop environment. In this paper, we attempt to develop a logistics task-resource allocation model for this problem, which not only considers the total cost and duration for sharing logistics network, but also refers to the resource efficiency intra-stage and stability interstage for resource providers. As the defects of slow convergence, weak local search and easy-to-precocious in traditional algorithms, an improved multi-objective artificial bee colony algorithm is developed with adaptive neighborhood rules. The process of algorithm improvement involves: (Ⅰ) an adaptive moving step size in population update strategy instead of random step size and (Ⅱ) an adaptive weigh updating method with multiple neighborhood search rules in local optimum. The results show that the improved algorithm can effectively solve multi-stage resource leveling problem proposed in this paper, compared with traditional artificial bee colony algorithm, non-dominated sorting genetic algorithm-Ⅱ and multi-objective particle swarm optimization, and can obtain a better non-dominated solution set with multiple metrics for algorithm.
机译:共享物流网络中的多阶段资源均衡问题是一个多目标的优化问题,在开环环境下是很难确定的多项式。在本文中,我们尝试建立一个针对该问题的物流任务-资源分配模型,该模型不仅考虑共享物流网络的总成本和持续时间,而且还涉及资源提供者的资源效率阶段和稳定性阶段。针对传统算法收敛速度慢,局部搜索弱,易熟的缺陷,提出了一种基于自适应邻域规则的改进多目标人工蜂群算法。算法的改进过程包括:(1)采用种群更新策略中的自适应移动步长代替随机步长;(Ⅱ)采用局部最优的多邻域搜索规则的自适应权重更新方法。结果表明,与传统人工蜂群算法,非支配排序遗传算法Ⅱ和多目标粒子群算法相比,改进算法可以有效解决本文提出的多阶段资源均衡问题。非主导解决方案集,具有多个算法指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号