首页> 外文期刊>IEEE Transactions on Computers >BaPa: A Novel Approach of Improving Load Balance in Parallel Matrix Factorization for Recommender Systems
【24h】

BaPa: A Novel Approach of Improving Load Balance in Parallel Matrix Factorization for Recommender Systems

机译:BAPA:一种新的提高矩阵分组在推荐系统中的负载平衡的新方法

获取原文
获取原文并翻译 | 示例

摘要

A simplified approach to accelerate matrix factorization of big data is to parallelize it. A commonly used method is to divide the matrix into multiple non-intersecting blocks and concurrently calculate them. This operation causes the Load balance problem, which significantly impacts parallel performance and is a big concern. A general belief is that the load balance across blocks is impossible by balancing rows and columns separately. We challenge the belief by proposing an approach of "Balanced Partitioning (BaPa)". We demonstrate under what circumstance independently balancing rows and columns can lead to the balanced intersection of rows and columns, why, and how. We formally prove the feasibility of BaPa by observing the variance of rating numbers across blocks, and empirically validate its soundness by applying it to two standard parallel matrix factorization algorithms, DSGD and CCD++. Besides, we establish a mathematical model of "Imbalance Degree" to explain further why BaPa works well. BaPa is applied to synchronous parallel matrix factorization, but as a general load balance solution, it has significant application potential.
机译:一种加速大数据的矩阵分解的简化方法是并行化它。常用的方法是将矩阵划分为多个非交叉块并同时计算它们。此操作会导致负载平衡问题,这显着影响了平行性能,并且是一个很大的关注点。一般信念是,通过分别平衡行和列来跨块的负载余额是不可能的。通过提出“平衡分区(BAPA)”的方法,我们挑战信仰。我们在独立平衡行和列可以导致行和列的平衡交叉点,为什么以及如何。我们通过观察跨块的额定值的差异来正式证明BAPA的可行性,并通过将其应用于两个标准并行矩阵分解算法,DSGD和CCD ++来凭经验验证其声音。此外,我们建立了“不平衡程度”的数学模型,以进一步解释为什么Bapa效果很好。 BAPA应用于同步并联矩阵分解,但作为一般负载平衡解决方案,它具有显着的应用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号