首页> 外文期刊>IEEE Transactions on Computers >Detection of SLA Violation for Big Data Analytics Applications in Cloud
【24h】

Detection of SLA Violation for Big Data Analytics Applications in Cloud

机译:云中大数据分析应用的SLA违规检测

获取原文
获取原文并翻译 | 示例

摘要

SLA violations do happen in real world. An SLA violation represents the failure of guaranteeing a service, which leads to unwanted consequences such as penalty payments, profit margin reduction, reputation degradation, customer churn and service interruptions. Hence, in the context of cloud-hosted big data analytics applications (BDAAs), it is paramount for providers to predict and prevent SLA violations. While machine learning-based techniques have been applied to detect SLA violations for web service or general cloud service, the study on detecting SLA violations dedicated for cloud-hosted BDAAs is still lacking. In this article, we propose four machine learning techniques and integrate 12 resampling methods to detect SLA violations for batch-based BDAAs in the cloud. We evaluate the efficiency of the proposed techniques in comparison with ideal and baseline classifiers based on a real-world trace dataset (Alibaba). Our work not only helps providers to choose the best performing prediction technique, but also provides them capabilities to uncover the hidden pattern of multiple configurations of BDAAs across layers.
机译:SLA违规行为确实发生在现实世界中。 SLA违规代表了保证服务的失败,这导致了不受欢迎的后果,例如罚款支付,盈利率减少,声誉下降,客户流失和服务中断。因此,在云托管的大数据分析应用程序(BDAAS)的背景下,提供商预测和阻止SLA违规是至关重要的。虽然已经应用了基于机器学习的技术来检测Web服务或普通云服务的SLA违规,但仍然缺乏对云托管BDAAS专用的SLA违规的研究。在本文中,我们提出了四种机器学习技术,并集成了12个重采样方法,以检测云中批次基于BDAAS的SLA违规。我们评估了与基于真实世界跟踪数据集(Alibaba)的理想和基线分类器相比的提出技术的效率。我们的工作不仅可以帮助提供商选择最佳的执行预测技术,还可以为它们提供遍布层遍布多个配置的多种配置的隐藏模式的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号