首页> 外文期刊>IEEE Transactions on Computers >MTHAEL: Cross-Architecture IoT Malware Detection Based on Neural Network Advanced Ensemble Learning
【24h】

MTHAEL: Cross-Architecture IoT Malware Detection Based on Neural Network Advanced Ensemble Learning

机译:MTHAEL:基于神经网络高级集合学习的跨体系结构物理软件检测

获取原文
获取原文并翻译 | 示例

摘要

The complexity, sophistication, and impact of malware evolve with industrial revolution and technology advancements. This article discusses and proposes a robust cross-architecture IoT malware threat hunting model based on advanced ensemble learning (MTHAEL). Our unique MTHAEL model using stacked ensemble of heterogeneous feature selection algorithms and state-of-the-art neural networks to learn different levels of semantic features demonstrates enhanced IoT malware detection than existing approaches. MTHAEL is the first of its kind that effectively optimizes recurrent neural network (RNN) and convolutional neural network (CNN) with high classification accuracy and consistently low computational overheads on different IoT architectures. Cross-architecture benchmarking is performed during the training with different architectures such as ARM, Intel80386, MIPS, and MIPS+Intel80386 individually. Two different hardware architectures were employed to analyze the architecture overhead, namely Raspberry Pi 4 (ARM-based architecture) and Core-i5 (Intel-based architecture). Our proposed MTHAEL is evaluated comprehensively with a large IoT cross-architecture dataset of 21,137 samples and has achieved 99.98 percent classification accuracy for ARM architecture samples, surpassing prior related works. Overall, MTHAEL has demonstrated practical suitability for cross-architecture IoT malware detection with low computational overheads requiring only 0.32 seconds to detect Any IoT malware.
机译:恶意软件的复杂性,复杂性和影响与工业革命和技术进步发展。本文讨论并提出了一种基于高级集合学习(MTHAEL)的强大跨体系结构的IOT恶意软件威胁狩猎模型。我们独特的MTHAEL模型,使用异构特征选择算法的堆叠集合和最先进的神经网络来学习不同级别的语义特征,演示了比现有方法的增强的物理软件恶意软件检测。 MTHAEL是首先,它有效地优化了经常性神经网络(RNN)和卷积神经网络(CNN),具有高分类精度,并且在不同的IOT架构上一致的低计算开销。在具有不同架构(如ARM,Intel80386,MIPS和MIPS + Intel80386)的不同架构期间执行跨架构基准测试。采用两种不同的硬件架构分析架构开销,即覆盆子PI 4(基于ARM的架构)和核心I5(基于英特尔的架构)。我们提出的MTHAEL是全面评估的,具有21,137个样本的大型物联网跨架构数据集,并为ARM架构样本进行了99.98%的分类准确性,超越了相关的相关工程。总体而言,MTHAEL对跨架构的IOT恶意软件检测具有实用适用性,具有低计算开销,只需0.32秒即可检测任何IOT恶意软件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号