首页> 外文期刊>IEEE Transactions on Computers >A Neural Network-Based On-Device Learning Anomaly Detector for Edge Devices
【24h】

A Neural Network-Based On-Device Learning Anomaly Detector for Edge Devices

机译:边缘设备的基于神经网络的On-Device学习异常检测器

获取原文
获取原文并翻译 | 示例

摘要

Semi-supervised anomaly detection is an approach to identify anomalies by learning the distribution of normal data. Backpropagation neural networks (i.e., BP-NNs) based approaches have recently drawn attention because of their good generalization capability. In a typical situation, BP-NN-based models are iteratively optimized in server machines with input data gathered from the edge devices. However, (1) the iterative optimization often requires significant efforts to follow changes in the distribution of normal data (i.e., concept drift), and (2) data transfers between edge and server impose additional latency and energy consumption. To address these issues, we propose ONLAD and its IP core, named ONLAD Core. ONLAD is highly optimized to perform fast sequential learning to follow concept drift in less than one millisecond. ONLAD Core realizes on-device learning for edge devices at low power consumption, which realizes standalone execution where data transfers between edge and server are not required. Experiments show that ONLAD has favorable anomaly detection capability in an environment that simulates concept drift. Evaluations of ONLAD Core confirm that the training latency is 1.95x similar to 6.58x faster than the other software implementations. Also, the runtime power consumption of ONLAD Core implemented on PYNQ-Z1 board, a small FPGA/CPU SoC platform, is 5.0x similar to 25.4x lower than them.
机译:半监督异常检测是通过学习正常数据分布来识别异常的方法。由于其良好的广泛性能力,最近基于基于展开的方法(即BP-NNS)的方法。在典型情况下,基于BP-NN的模型在服务器计算机中迭代地优化,其中输入数据从边缘设备收集。然而,(1)迭代优化通常需要重大努力遵循正常数据分布的变化(即,概念漂移),(2)边缘和服务器之间的数据传输施加额外的延迟和能量消耗。要解决这些问题,我们提出了名为Onlad Core的伊尔德和IP核心。 onlad高度优化,以执行快速顺序学习,以遵循小于1毫秒的概念漂移。 onlad核心实现了低功耗下的边缘设备的设备学习,这意味着不需要边缘和服务器之间的数据传输的独立执行。实验表明,在模拟概念漂移的环境中,Inlad具有有利的异常检测能力。 onlad核心的评估证实,培训延迟比其他软件实现更快的培训延迟与6.58倍相似。此外,在PyNQ-Z1板上实现的onlad核心的运行时功耗为5.0x,与它们低25.4倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号