首页> 外文期刊>IEEE Transactions on Computers >A benchmark parallel sort for shared memory multiprocessors
【24h】

A benchmark parallel sort for shared memory multiprocessors

机译:共享内存多处理器的基准并行排序

获取原文
获取原文并翻译 | 示例

摘要

The first parallel sort algorithm for shared memory MIMD (multiple-instruction-multiple-data-stream) multiprocessors that has a theoretical and measured speedup near linear is exhibited. It is based on a novel asynchronous parallel merge that evenly partitions data to be merged among any number of processors. A benchmark sorting algorithm is proposed that uses this merge to remove the linear time bottleneck inherent in previous multiprocessors sorts. This sort, when applied to data set on p processors, has a time complexity of O((n log n)/p)+O((n log p)/p) and a space complexity of 2n, where n is the number of keys being sorted. Evaluations of the merge and benchmark sort algorithms on a 12-processor Sequent Balance 21000 System demonstrate near-linear speedup when compared to sequential Quicksort.
机译:展示了一种用于共享内存MIMD(多指令多数据流)多处理器的并行并行排序算法,该算法具有接近线性的理论和实测加速比。它基于一种新颖的异步并行合并,该合并可以在任意数量的处理器之间平均分割要合并的数据。提出了一种基准排序算法,该算法使用此合并消除了以前的多处理器排序中固有的线性时间瓶颈。当将这种排序应用于p个处理器上的数据集时,其时间复杂度为O((n log n)/ p)+ O((n log p)/ p),空间复杂度为2n,其中n是数字被排序的键。与顺序Quicksort相比,在12处理器Sequent Balance 21000系统上对合并和基准排序算法的评估显示出近乎线性的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号