首页> 外文期刊>IEEE Transactions on Computers >Algorithmic mapping of neural network models onto parallel SIMD machines
【24h】

Algorithmic mapping of neural network models onto parallel SIMD machines

机译:神经网络模型到并行SIMD机器上的算法映射

获取原文
获取原文并翻译 | 示例

摘要

Implementations of neural networks on programmable massively parallel computers are addressed. The methods are based on a graph theoretic approach and are applicable to a large class of networks in which the computations can be described by means of matrix and vector operations. A detailed characterization of the target machine is provided. Two mappings are presented. The first is designed for a processor array consisting of a very large number of small processing units. The neurons and the nonzero synaptic weights are assigned to the processors in a predetermined order, one per processor. The data transfers between processors containing neurons and weights are implemented using a novel routing algorithm. The second mapping is designed for the data array of size N*N and a smaller processor array of size P*P, PN, i.e., it addresses the partitioned case. These mappings are applicable to most of the mesh-connected single-instruction-multiple-data (SIMD) machines.
机译:解决了在可编程大规模并行计算机上神经网络的实现。该方法基于图论方法,并且适用于可以通过矩阵和矢量运算描述计算的一类大型网络。提供了目标机器的详细特性。呈现两个映射。第一种设计用于包含大量小型处理单元的处理器阵列。将神经元和非零突触权重按预定顺序分配给处理器,每个处理器一个。使用新型路由算法可实现包含神经元和权重的处理器之间的数据传输。第二个映射是为大小为N * N的数据阵列和大小为P * P,P N的较小处理器阵列设计的,即,它解决了分区情况。这些映射适用于大多数网格连接的单指令多数据(SIMD)机器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号