首页> 外文期刊>IEEE Transactions on Computers >Nonprime memory systems and error correction in address translation
【24h】

Nonprime memory systems and error correction in address translation

机译:非主要存储系统和地址转换中的错误纠正

获取原文
获取原文并翻译 | 示例

摘要

Using a prime number p of memory banks on a vector processor allows a conflict-free access for any slice of p consecutive elements of a vector stored with a stride not multiple of p. To reject the use of a prime number of memory banks, it is generally advanced that address computation for such a memory system would require systematic Euclidean division by the number p. The Chinese Remainder Theorem allows a simple mapping of data onto the memory banks for which address computation does not require any Euclidean division. However, this requires that the number of words in each memory module m and p be relatively prime. We propose a method based on the Chinese Remainder Theorem for moduli with common factors that does not have such a restriction. The proposed method does not require Euclidean division and also results in an efficient error detection/correction mechanism for address translation.
机译:在向量处理器上使用质数p的存储体可以对无跨步p的跨度存储的向量的p个连续元素的任何切片进行无冲突访问。为了拒绝使用质数的存储体,通常已经提出,对于这种存储系统的地址计算将需要系统的欧几里得除以数p。中国余数定理允许将数据简单地映射到存储体,对于这些存储体而言,地址计算不需要任何欧几里得除法。但是,这要求每个存储模块m和p中的字数要相对质数。我们提出了一种基于中国余数定理的具有公因子的模量的方法,该方法没有这种限制。所提出的方法不需要欧几里得除法,并且还导致用于地址转换的有效的错误检测/纠正机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号