首页> 外文期刊>IEEE Transactions on Computers >Distributed fault-tolerant ring embedding and reconfiguration in hypercubes
【24h】

Distributed fault-tolerant ring embedding and reconfiguration in hypercubes

机译:超立方体中的分布式容错环嵌入和重新配置

获取原文
获取原文并翻译 | 示例

摘要

To embed a ring in a hypercube is to find a Hamiltonian cycle through every node of the hypercube. It is obvious that no 2/sup n/-node Hamiltonian cycle exists in an n-dimensional faulty hypercube which has at least one faulty node. However, if a hypercube has faulty links only and the number of faulty links is at most n-2, at least one 2/sup n/-node Hamiltonian cycle can be found. In this paper, we propose a distributed ring-embedding algorithm that can find a Hamiltonian cycle in a fault-free or faulty n-dimensional hypercube (Q,), and the complexity is O(n) parallel steps. The algorithm is based on the recursion property of the hypercube and the free-link dimension concept. In some cases, even when the number of faulty links is larger than n-2, Hamiltonian cycles may still exist. We show that the largest possible number of faulty links that can be tolerated is 2/sup n-1/-1. The performance and the constraints of the fault-tolerant algorithm is also analyzed in detail in this paper. Furthermore, a dynamic reconfiguration algorithm for an embedded ring is proposed and discussed. Due to the distributed nature of the algorithms, they are useful for the simulation of ring-based multiprocessors on MIMD hypercube multiprocessors.
机译:在超立方体中嵌入环是通过超立方体的每个节点找到哈密顿环。显然,在具有至少一个故障节点的n维故障超立方体中不存在2 / up n节点的哈密顿环。但是,如果超立方体仅具有故障链接,并且故障链接的数量最多为n-2,则可以找到至少一个2 / s n /节点哈密顿量。在本文中,我们提出了一种分布式环嵌入算法,该算法可以在无故障或有故障的n维超立方体(Q,)中找到哈密顿环,其复杂度为O(n)个并行步骤。该算法基于超立方体的递归属性和自由链接维概念。在某些情况下,即使故障链接的数量大于n-2,哈密顿循环仍然可能存在。我们显示,可以容忍的最大错误链路数量为2 / sup n-1 / -1。本文还详细分析了容错算法的性能和约束条件。此外,提出并讨论了一种用于嵌入式环的动态重配置算法。由于算法的分布式性质,它们可用于在MIMD超立方体多处理器上模拟基于环的多处理器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号