首页> 外文期刊>IEEE Transactions on Computers >Optimal skewed data allocation on multiple channels with flat broadcast per channel
【24h】

Optimal skewed data allocation on multiple channels with flat broadcast per channel

机译:多个频道上的最佳偏斜数据分配,每个频道固定广播

获取原文
获取原文并翻译 | 示例

摘要

Broadcast is an efficient and scalable way of transmitting data to an unlimited number of clients that are listening to a channel. Cyclically broadcasting data over the channel is a basic scheduling technique, which is known as flat scheduling. When multiple channels are available, a data allocation technique is needed to assign data to channels. Partitioning data among channels in an unbalanced way, depending on data popularities, is an allocation technique known as skewed allocation. The problem of data broadcasting over multiple channels is considered, assuming skewed data allocation to channels and flat data scheduling per channel, with the objective of minimizing the average waiting time of the clients. First, several algorithms, based on dynamic programming, are presented which provide optimal solutions for N data items and K channels. Specifically, for data items with uniform lengths, an O(NK log N) time algorithm is proposed, which improves over the previously known O(N/sup 2/K) time algorithm. When K/spl les/4, a simpler O(N log N) time algorithm is exhibited which requires only O(N) time if the data items are sorted. Moreover, for data items with nonuniform lengths, it is shown that the problem is NP-hard when K=2 and strong NP-hard for arbitrary K. In the former case, a pseudopolynomial algorithm is discussed whose time is O(NZ), where Z is the sum of the data lengths. In the latter case, an algorithm is devised with time exponential in the maximum data length, which can optimally solve, in reasonable time, only small instances. For larger instances, a new heuristic is devised which is experimentally tested on some benchmarks whose popularities are characterized by Zipf distributions. Such experimental tests reveal that the new heuristic proposed here always outperforms the best previously known heuristic in terms of solution quality.
机译:广播是一种高效且可扩展的方式,可将数据传输到无数个正在监听频道的客户端。通过信道循环广播数据是一种基本的调度技术,称为固定调度。当有多个通道可用时,需要一种数据分配技术来将数据分配给通道。根据数据的流行程度,以不平衡的方式在通道之间进行数据分区是一种称为偏移分配的分配技术。考虑到在多个通道上进行数据广播的问题,假设对通道的数据分配有偏差并且每个通道的数据调度固定,目的是使客户端的平均等待时间最小化。首先,提出了几种基于动态编程的算法,它们为N个数据项和K个通道提供了最佳解决方案。具体地,对于具有均匀长度的数据项,提出了O(NK log N)时间算法,该算法比先前已知的O(N / sup 2 / K)时间算法有所改进。当K / spl les / 4时,展示了一种更简单的O(N log N)时间算法,如果对数据项进行排序,则仅需要O(N)时间。此外,对于长度不均匀的数据项,表明当K = 2时问题为NP-hard,对于任意K为强NP-hard。在前一种情况下,讨论了时间为O(NZ)的伪多项式算法,其中Z是数据长度的总和。在后一种情况下,设计了一种算法,该算法在最大数据长度中具有时间指数,可以在合理的时间内最佳地解决小实例问题。对于较大的实例,设计了一种新的启发式方法,并在某些基准测试中对其进行了实验性测试,这些基准的流行度以Zipf分布为特征。这样的实验测试表明,就解决方案质量而言,此处提出的新启发式方法始终优于以前最好的启发式方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号