首页> 外文期刊>IEEE Transactions on Computers >Program counter-based prediction techniques for dynamic power management
【24h】

Program counter-based prediction techniques for dynamic power management

机译:基于程序计数器的动态电源管理预测技术

获取原文
获取原文并翻译 | 示例

摘要

Reducing energy consumption has become one of the major challenges in designing future computing systems. This paper proposes a novel idea of using program counters to predict I/O activities in the operating system. It presents a complete design of program-counter access predictor (PCAP) that dynamically learns the access patterns of applications and predicts when an I/O device can be shut down to save energy. PCAP uses path-based correlation to observe a particular sequence of program counters leading to each idle period and predicts future occurrences of that idle period. PCAP differs from previously proposed shutdown predictors in its ability to: 1) correlate I/O operations to particular behavior of the applications and users, 2) carry prediction information across multiple executions of the applications, and 3) attain higher energy savings while incurring lower mispredictions. We perform an extensive evaluation study of PCAP using a detailed trace-driven simulation and an actual Linux implementation. Our results show that PCAP achieves lower average mispredictions and higher energy savings than the simple timeout scheme and the state-of-the-art learning tree scheme.
机译:减少能耗已经成为设计未来计算系统的主要挑战之一。本文提出了一种使用程序计数器来预测操作系统中I / O活动的新颖想法。它提供了程序计数器访问预测器(PCAP)的完整设计,该程序可以动态学习应用程序的访问模式并预测何时可以关闭I / O设备以节省能源。 PCAP使用基于路径的相关性来观察导致每个空闲期的程序计数器的特定序列,并预测该空闲期的未来发生。 PCAP与先前提出的关机预测器的不同之处在于:1)将I / O操作与应用程序和用户的特定行为相关联; 2)在应用程序的多个执行过程中携带预测信息; 3)节省更多的能源,同时降低能耗错误的预测。我们使用详细的跟踪驱动模拟和实际的Linux实现对PCAP进行了广泛的评估研究。我们的结果表明,与简单的超时方案和最新的学习树方案相比,PCAP可以实现更低的平均错误预测和更高的能源节省。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号