首页> 外文期刊>IEEE Transactions on Computers >Memory Data Flow Modeling in Statistical Simulation for the Efficient Exploration of Microprocessor Design Spaces
【24h】

Memory Data Flow Modeling in Statistical Simulation for the Efficient Exploration of Microprocessor Design Spaces

机译:统计仿真中的内存数据流建模,可有效探索微处理器设计空间

获取原文
获取原文并翻译 | 示例

摘要

Microprocessor design is both complex and time-consuming: exploring a huge design space for identifying the optimal design under a number of constraints is infeasible using detailed architectural simulation of entire benchmark executions. Statistical simulation is a recently introduced approach for efficiently culling the microprocessor design space. The basic idea of statistical simulation is to collect a number of important program characteristics and to generate a synthetic trace from it. Simulating this synthetic trace is extremely fast as it contains a million instructions only. This paper improves the statistical simulation methodology by proposing accurate memory data flow models. We propose (i) cache miss correlation, or measuring cache statistics conditionally dependent on the global cache hit/miss history, for modeling cache miss patterns and memory-level parallelism, (ii) cache line reuse distributions for modeling accesses to outstanding cache lines, and (iii) through-memory read-after-write dependency distributions for modeling load forwarding and bypassing. Our experiments using the SPEC CPU2000 benchmarks show substantial improvements compared to current state-of-the-art statistical simulation methods. For example, for our baseline configuration, we reduce the average IPC prediction error from 10.9% to 2.1%; the maximum error observed equals 5.8%.
机译:微处理器的设计既复杂又费时:在整个基准执行过程中进行详细的架构仿真,探索巨大的设计空间以在许多约束条件下确定最佳设计是不可行的。统计仿真是最近引入的一种方法,可以有效地选择微处理器的设计空间。统计模拟的基本思想是收集许多重要的程序特征,并从中生成综合跟踪。由于仅包含一百万条指令,因此模拟此合成轨迹非常快。本文通过提出精确的内存数据流模型来改进统计仿真方法。我们提出(i)高速缓存未命中相关性,或有条件地根据全局高速缓存命中/未命中历史来测量高速缓存统计信息,以对高速缓存未命中模式和内存级并行性进行建模;(ii)高速缓存行重用分布用于对未完成的高速缓存行进行访问建模, (iii)通过内存读取后写入相关性分布,以对负载转发和旁路建模。我们使用SPEC CPU2000基准测试的结果表明,与当前最先进的统计模拟方法相比,已有了很大的改进。例如,对于我们的基准配置,我们将平均IPC预测误差从10.9%降低到2.1%;观察到的最大误差等于5.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号