首页> 外文期刊>Computers, IEEE Transactions on >Message-Efficient Location Prediction for Mobile Objects in Wireless Sensor Networks Using a Maximum Likelihood Technique
【24h】

Message-Efficient Location Prediction for Mobile Objects in Wireless Sensor Networks Using a Maximum Likelihood Technique

机译:使用最大似然技术的无线传感器网络中移动对象的消息有效位置预测

获取原文
获取原文并翻译 | 示例

摘要

In the tracking system, a better prediction model can significantly reduce power consumption in a wireless sensor network because fewer redundant sensors will be activated to keep monitoring the object. The Gauss-Markov mobility model is one of the best mobility models to describe object trajectory because it can capture the correlation of object velocity in time. Traditionally, the Gauss-Markov parameters are estimated using an autocorrelation technique or a recursive least-squares estimation technique; either of these techniques, however, requires a large amount of historical movement information of the mobile object, which is not suitable for tracking objects in a wireless sensor network because they demand a considerable amount of message communication overhead between wireless sensors which are usually battery powered. In this paper, we develop a Gauss-Markov parameter estimator for wireless sensor networks (GMPE_MLH) using a maximum likelihood technique. The GMPE_MLH model estimates the Gauss-Markov parameters with few requirements in terms of message communication overhead. Simulations demonstrate that the GMPE_MLH model generates negligible differences between the actual and estimated values of the Gauss-Markov parameters and provides comparable prediction of the mobile object's location to the Gauss-Markov parameter estimators using an autocorrelation technique or a recursive least-squares estimation.
机译:在跟踪系统中,更好的预测模型可以显着减少无线传感器网络中的功耗,因为将激活较少的冗余传感器来继续监视对象。高斯-马尔可夫移动性模型是描述对象轨迹的最佳移动性模型之一,因为它可以及时捕获对象速度的相关性。传统上,使用自相关技术或递归最小二乘估计技术来估计高斯-马尔可夫参数;但是,这些技术中的任何一种都需要大量的移动对象的历史运动信息,这不适合跟踪无线传感器网络中的对象,因为它们需要无线传感器之间的大量消息通信开销,这些传感器通常由电池供电。在本文中,我们使用最大似然技术开发了一种用于无线传感器网络(GMPE_MLH)的高斯-马尔可夫参数估计器。 GMPE_MLH模型估计高斯-马尔可夫参数,在消息通信开销方面几乎没有要求。仿真表明,GMPE_MLH模型在高斯-马尔可夫参数的实际值和估计值之间产生的差异可忽略不计,并使用自相关技术或递归最小二乘估计提供了与高斯-马尔可夫参数估计器可比的移动对象位置预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号