首页> 外文期刊>Computers, IEEE Transactions on >Toward Advocacy-Free Evaluation of Packet Classification Algorithms
【24h】

Toward Advocacy-Free Evaluation of Packet Classification Algorithms

机译:走向无拥护的分组分类算法评估

获取原文
获取原文并翻译 | 示例

摘要

Understanding the real performance of a proposed algorithm is a basic requirement for both algorithm designers and implementers. However, this is sometimes difficult to achieve. Each new algorithm published is evaluated from different perspectives and based on different assumptions. Without a common ground, it is almost impossible to compare different algorithms directly. Choosing an incompetent algorithm for an application can incur significant cost. This is especially true for packet classification in network routers, since packet classification is intrinsically a hard problem and all existing algorithms are based on some heuristics and filter set characteristics. The performance of the packet classification subsystem is critical to the overall performance of the network routers. Although numerous algorithms have been proposed so far, a benchmark that can give them consistent evaluation and reveal their comparable performance is still missing. This paper summarizes our efforts toward improving this situation. First, we conduct a high-level survey on the existing algorithms and extract some insights on the general design ideas. Second, we describe an open-source platform dedicated for advocacy-free evaluation of packet classification algorithms. Many representative algorithms are actually implemented under a set of uniform conditions and assumptions. The freely available implementations allow other researchers to easily test them under different scenarios. We also enforce some consistent and fundamental criteria for the algorithm evaluation, so that their performance and potentials are directly comparable, regardless of the actual implementation platforms. This project serves dual purpose: It helps the researchers to accelerate the innovation in the area of packet classification algorithm development by relieving them from the labor of replicating the previous work and by enabling them to quickly compare and evaluate algorithms. Meanwhile, it also helps the system -n-nimplementers to easily choose the capable algorithm for their particular applications. Aiming to build an open-source library, we encourage external contributions of new algorithm implementations and evaluations under the same framework. We believe the practice will benefit the research and design community as a whole.
机译:了解算法的实际性能是算法设计人员和实施人员的基本要求。但是,有时这很难实现。每种发布的新算法均从不同的角度和基于不同的假设进行评估。没有共同点,几乎不可能直接比较不同的算法。为应用程序选择不称职的算法可能会导致大量成本。对于网络路由器中的数据包分类尤其如此,因为数据包分类本质上是一个难题,并且所有现有算法都基于某些启发式方法和过滤器集特征。数据包分类子系统的性能对于网络路由器的整体性能至关重要。尽管到目前为止已经提出了许多算法,但是仍然缺少可对其进行一致评估并揭示其可比性能的基准。本文总结了我们为改善这种情况所做的努力。首先,我们对现有算法进行了高层调查,并从总体设计思想中得出了一些见解。其次,我们描述了一个专用于数据包分类算法的无拥护评估的开源平台。实际上,许多代表性算法是在一组统一的条件和假设下实现的。免费提供的实现使其他研究人员可以轻松地在不同情况下对其进行测试。我们还对算法评估实施了一些一致且基本的标准,因此无论实际实现平台如何,它们的性能和潜力都可以直接比较。该项目具有双重目的:帮助研究人员减轻数据包分类算法开发领域的创新,使他们摆脱重复工作的繁琐工作,并使他们能够快速比较和评估算法。同时,它还帮助系统n实现者轻松地为其特定应用选择功能强大的算法。为了建立一个开放源代码库,我们鼓励在相同框架下对新算法实现和评估的外部贡献。我们相信这种做法将使整个研究和设计社区受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号