首页> 外文期刊>Computers, IEEE Transactions on >Scalable Pattern Matching on Multicore Platform via Dynamic Differentiated Distributed Detection (D⁴)
【24h】

Scalable Pattern Matching on Multicore Platform via Dynamic Differentiated Distributed Detection (D⁴)

机译:通过动态差异分布检测(D⁴)在多核平台上进行可扩展模式匹配

获取原文
获取原文并翻译 | 示例

摘要

Pattern Matching (PM) is a key building block for many emerging network applications. Modern multicore platforms are becoming performance competitive with traditional hardware solutions, which are expensive and hard to adapt to the rapid diversification of Internet applications. However, due to uneven network flow sizes and the need to retain packet order within each flow, traditional parallel processing models using packet flows as the basic unit to partition the workload cannot fully take advantage of multicore platforms' power, exhibiting low CPU utilization and poor scalability with increasing numbers of CPUs or cores. In this paper, we propose a novel parallel inspection model called Dynamic Differentiated Distributed Detection ({rm D}^{4}). {rm D}^{4} deploys balanced parallel detection by adding one more dimension on PM workload partition. The pattern set is prepartitioned into several subsets so as to distribute the workload of the hot flows across multiple cores while still maintaining packet order within each flow. We also show theoretically that higher number of subsets leads to higher algorithmic overhead. To achieve optimal throughput for all flow size distributions, {rm D}^{4} prepartitions the pattern set in several ways for use in different detection modes beforehand, and then, dynamically switches among these modes on-the-fly according to the flow and runtime information it senses. {rm D}^{4} also allows multiple PM algorithms to work simultaneously on different pattern subsets. According to several heuristics and the algorithms' characteristics, the detection mode selection and subset partitioning algorithms are designed to maximize the CPU/core utilization while avoiding unnecessary overheads. Experiments show that {rm D}^{4} features high core utilization and low overhead, thus achieving distinct performance gains against traditional load balancing schemes, as shown by experimental results using real-world pattern sets and traffic traces.
机译:模式匹配(PM)是许多新兴网络应用程序的关键构建块。现代多核平台正变得与传统的硬件解决方案在性能上竞争,传统的硬件解决方案价格昂贵且难以适应Internet应用程序的快速多样化。但是,由于网络流量大小不均以及需要在每个流中保留数据包顺序,传统的以数据包流为基本单位来划分工作负载的并行处理模型无法充分利用多核平台的功能,CPU利用率低且性能差随着CPU或内核数量的增加而实现可扩展性。在本文中,我们提出了一种新颖的并行检查模型,称为动态差分分布式检测({rm D} ^ {4})。 {rm D} ^ {4}通过在PM工作负载分区上增加一个维度来部署平衡并行检测。模式集被预划分为几个子集,以便在多个内核之间分配热流的工作负载,同时仍保持每个流内的数据包顺序。从理论上我们还表明,子集数量越多,算法开销就越大。为了针对所有流量大小分布实现最佳吞吐量,{rm D} ^ {4}预先以几种方式对模式集进行了分区,以用于不同的检测模式,然后根据流量动态地在这些模式之间动态切换以及它感测到的运行时信息。 {rm D} ^ {4}还允许多个PM算法在不同的模式子集上同时工作。根据几种试探法和算法的特点,设计了检测模式选择和子集划分算法,以最大程度地提高CPU /核心利用率,同时避免不必要的开销。实验表明,{rm D} ^ {4}具有较高的内核利用率和较低的开销,因此与传统的负载平衡方案相比,具有明显的性能提升,如使用真实模式集和流量跟踪的实验结果所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号