首页> 外文期刊>Computers, IEEE Transactions on >Packer: Parallel Garbage Collection Based on Virtual Spaces
【24h】

Packer: Parallel Garbage Collection Based on Virtual Spaces

机译:Packer:基于虚拟空间的并行垃圾收集

获取原文
获取原文并翻译 | 示例

摘要

The fundamental challenge of garbage collector (GC) design is to maximize the recycled space with minimal time overhead. For efficient memory management, in many GC designs the heap is divided into large object space (LOS) and normal object space (non-LOS). When either space is full, garbage collection is triggered even though the other space may still have plenty of room, thus leading to inefficient space utilization. Also, space partitioning in existing GC designs implies different GC algorithms for different spaces. This not only prolongs the pause time of garbage collection, but also makes collection inefficient on multiple spaces. To address these problems, we propose Packer, a parallel garbage collection algorithm based on the novel concept of virtual spaces. Instead of physically dividing the heap into multiple spaces, Packer manages multiple virtual spaces in one physical space. With multiple virtual spaces, Packer offers efficient memory management. With one physical space, Packer avoids the problem of an inefficient space utilization. To reduce the garbage collection pause time, we also propose a novel parallelization method that is applicable to multiple virtual spaces. Specifically, we reduce the compacting GC parallelization problem into a discreted acyclic graph (DAG) traversal parallelization problem, and apply it to both normal and large object compaction.
机译:垃圾收集器(GC)设计的根本挑战是以最少的时间开销最大化可回收空间。为了进行有效的内存管理,在许多GC设计中,堆都分为大对象空间(LOS)和普通对象空间(non-LOS)。当其中一个空间已满时,即使另一个空间可能仍然有足够的空间,也会触发垃圾回收,从而导致空间利用效率低下。而且,现有GC设计中的空间划分意味着针对不同空间的不同GC算法。这不仅延长了垃圾回收的暂停时间,而且使多个空间的回收效率低下。为了解决这些问题,我们提出了Packer,一种基于虚拟空间新概念的并行垃圾收集算法。 Packer不在物理上将堆划分为多个空间,而是在一个物理空间中管理多个虚拟空间。 Packer具有多个虚拟空间,可提供有效的内存管理。通过一个物理空间,Packer避免了空间利用效率低下的问题。为了减少垃圾收集的暂停时间,我们还提出了一种适用于多个虚拟空间的新颖并行化方法。具体来说,我们将压缩GC并行化问题简化为离散无环图(DAG)遍历并行化问题,并将其应用于常规和大型对象压缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号