首页> 外文期刊>IEEE Transactions on Computers >Requirement-Aware Scheduling of Bag-of-Tasks Applications on Grids with Dynamic Resilience
【24h】

Requirement-Aware Scheduling of Bag-of-Tasks Applications on Grids with Dynamic Resilience

机译:具有动态弹性的网格上的任务袋应用程序的需求感知调度

获取原文
获取原文并翻译 | 示例

摘要

Grids have been extensively deployed to handle various scientific and engineering applications that can be structured as bag-of-tasks (BoT). The scheduling of BoT applications on Grids is an important issue for achieving high performance. Grid scheduling involves a number of challenging issues, mainly due to the dynamic nature of the Grid. To deal with this dynamic nature, in this paper, we propose an online scheduling algorithm called prudent algorithm with replication (PAR) for scheduling Grid applications. PAR is shown to prudently make scheduling decisions in such a way that it can tolerate inaccurate performance predictions. Another point to note is that PAR adopts task duplication as an attempt to reduce serious schedule increases. Moreover, since the applications to be performed may widely vary in terms of their required hardware and software, we also capture the loads' various processing requirements in our algorithms, a unique feature that is applicable for running proprietary applications only on certain eligible processing nodes. Thus, in our problem formulation each application can only be processed by certain processors as both the applications and processing nodes are heterogeneous. We then present a task selection policy, referred to as requirement-aware load selection (RALS) policy to handle the contention of multiple applications that have various processing requirements but share the same computing resources. Based on RALS and PAR, we develop two scheduling algorithms: requirement-aware prudent algorithm with replication (RAPAR), and requirement-aware knowledge-free algorithm with replication (RAKAR). RAPAR and RAKAR address the scheduling of multiple BoT applications with heterogeneous processing requirements on Grids. RAPAR works in scenarios where inaccurate performance prediction information is provided whereas RAKAR works without any prediction information. Performance evaluation results are presented to demonstrate the effectiveness and com- etitiveness of our approaches when compared to existing algorithms.
机译:网格已被广泛部署以处理各种可以构造为任务袋(BoT)的科学和工程应用程序。在网格上安排BoT应用程序是实现高性能的重要问题。网格调度涉及许多具有挑战性的问题,主要是由于网格的动态性质。为了应对这种动态特性,在本文中,我们提出了一种在线调度算法,称为带有复制的审慎算法(PAR),用于调度Grid应用程序。 PAR被证明以可以容忍不准确的性能预测的方式谨慎地做出调度决策。要注意的另一点是,PAR采用任务重复作为减少严重计划进度的尝试。此外,由于要执行的应用程序在所需的硬件和软件方面可能存在很大差异,因此我们还在算法中捕获了负载的各种处理要求,这一独特功能仅适用于仅在某些合格的处理节点上运行专有应用程序。因此,在我们的问题表述中,每个应用程序只能由某些处理器处理,因为应用程序和处理节点都是异构的。然后,我们提出一种任务选择策略,称为需求感知负载选择(RALS)策略,以处理具有各种处理要求但共享相同计算资源的多个应用程序的争用。基于RALS和PAR,我们开发了两种调度算法:具有复制的需求感知谨慎算法(RAPAR)和具有复制的需求感知无知识算法(RAKAR)。 RAPAR和RAKAR解决了在网格上具有异构处理要求的多个BoT应用程序的调度。 RAPAR在提供不准确的性能预测信息的场景中工作,而RAKAR在没有任何预测信息的情况下工作。提出了性能评估结果,以证明与现有算法相比,我们的方法的有效性和竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号