首页> 外文期刊>Computers, IEEE Transactions on >Enhancing Performance of Random Testing through Markov Chain Monte Carlo Methods
【24h】

Enhancing Performance of Random Testing through Markov Chain Monte Carlo Methods

机译:马尔可夫链蒙特卡罗方法提高随机测试的性能

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a probabilistic approach to finding failure-causing inputs based on Bayesian estimation. According to our probabilistic insights of software testing, the test case generation algorithms are developed by Markov chain Monte Carlo (MCMC) methods. Dissimilar to existing random testing schemes such as adaptive random testing, our approach can also utilize the prior knowledge on software testing. In experiments, we compare effectiveness of our MCMC-based random testing with both ordinary random testing and adaptive random testing in real program sources. These results indicate the possibility that MCMC-based random testing can drastically improve the effectiveness of software testing.
机译:在本文中,我们提出了一种基于贝叶斯估计的概率方法来查找导致失败的输入。根据我们对软件测试的概率见解,测试案例生成算法是通过马尔可夫链蒙特卡洛(MCMC)方法开发的。与现有的随机测试方案(如自适应随机测试)不同,我们的方法还可以利用软件测试方面的先验知识。在实验中,我们将基于MCMC的随机测试与普通随机测试和真实程序源中的自适应随机测试的有效性进行了比较。这些结果表明,基于MCMC的随机测试可以极大地提高软件测试的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号