首页> 外文期刊>Computers, IEEE Transactions on >On the Minimum Link-Length Rectilinear Spanning Path Problem: Complexity and Algorithms
【24h】

On the Minimum Link-Length Rectilinear Spanning Path Problem: Complexity and Algorithms

机译:关于最小链接长度直线跨越路径问题:复杂度和算法

获取原文
获取原文并翻译 | 示例

摘要

The (parameterized) Minimum Link-Length Rectilinear Spanning Path problem in the -dimensional Euclidean space (-RSP), for a given set of points in and a positive integer , is to find a piecewise-linear path with at most line-segments that covers (i.e., contains) all points in , where all line-segments in are axis-parallel. We first prove that the problem 2-RSP is NP-complete, improving the previously known result that the problem 10-RSP is NP-complete. We then consider a constrained -RSP problem in which each line-segment in the spanning path must cover all the points in the given set that share the same line with . We present a new parameterized algorithm with running time for the constrained -RSP problem, which significantly improves the previous best result and is the first parameterized algorithm of running time for the constrained -RSP problem for a fixed . We show that these results can be extended to the Minimum Link-Length Rectilinear Traveling Salesman problem.
机译:对于给定的点集和正整数,-维欧几里德空间(-RSP)中的(参数化)最小链长直线延伸路径问题是要找到一个分段线性路径,该分段线性路径最多具有覆盖(即包含)中的所有点,其中中的所有线段都是轴平行的。我们首先证明问题2-RSP是NP完全的,改进了先前已知的问题10-RSP是NP完全的结果。然后,我们考虑一个受约束的-RSP问题,其中扩展路径中的每个线段必须覆盖给定集合中与共享同一条线的所有点。我们针对约束-RSP问题提出了一种具有运行时间的新参数化算法,该算法大大改善了先前的最佳结果,并且是针对固定-RSP问题的运行时间的第一种参数化算法。我们证明了这些结果可以推广到最小链长直线旅行商问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号