首页> 外文期刊>Computers, IEEE Transactions on >Leveraging Social Networks for Effective Spam Filtering
【24h】

Leveraging Social Networks for Effective Spam Filtering

机译:利用社交网络进行有效的垃圾邮件过滤

获取原文
获取原文并翻译 | 示例

摘要

The explosive growth of unsolicited e-mails has prompted the development of numerous spam filter techniques. Bayesian spam filters are superior to static keyword-based spam filters in that they can continuously evolve to tackle new spam by learning keywords in new spam emails. However, Bayesian spam filters are easily poisoned by clever spammers who avoid spam keywords and add many innocuous words in their emails. Also, Bayesian spam filters need a significant amount of time to adapt to a new spam based on user feedback. Moreover, few current spam filters exploit social networks to assist in spam detection. In order to develop an accurate and user-friendly spam filter, we propose a SOcial network Aided Personalized and effective spam filter (SOAP) in this paper. In SOAP, each node connects to its social friends; i.e., nodes form a distributed overlay by directly using social network links as overlay links. Each node uses SOAP to collect information and check spam autonomously in a distributed manner. Unlike previous spam filters that focus on parsing keywords (e.g., Bayesian filters) or building blacklists, SOAP exploits the social relationships among email correspondents and their (dis)interests to detect spam adaptively and automatically. In each node, SOAP integrates four components into the basic Bayesian filter: social closeness-based spam filtering, social interest-based spam filtering, adaptive trust management, and friend notification. We have evaluated the performance of SOAP using simulation based on trace data from Facebook. We also have implemented a SOAP prototype for real-world experiments. Experimental results show that SOAP can greatly improve the performance of Bayesian spam filters in terms of accuracy, attack-resilience, and efficiency of spam detection. The performance of the Bayesian spam filter is SOAP’s lower bound.
机译:不请自来的电子邮件的爆炸性增长推动了众多垃圾邮件过滤器技术的发展。贝叶斯垃圾邮件过滤器优于静态的基于关键字的垃圾邮件过滤器,因为它们可以通过学习新的垃圾邮件电子邮件中的关键字来不断发展以解决新的垃圾邮件。但是,贝叶斯垃圾邮件过滤器很容易被聪明的垃圾邮件发送者毒害,这些垃圾邮件发送者避免使用垃圾邮件关键字,并在电子邮件中添加许多无害的单词。此外,贝叶斯垃圾邮件过滤器需要大量时间才能根据用户反馈适应新的垃圾邮件。此外,当前很少有垃圾邮件过滤器利用社交网络来协助垃圾邮件检测。为了开发准确且用户友好的垃圾邮件过滤器,我们在本文中提出了一种社交网络辅助的个性化有效垃圾邮件过滤器(SOAP)。在SOAP中,每个节点都连接到其社交朋友。即,节点通过直接使用社交网络链接作为覆盖链接来形成分布式覆盖。每个节点都使用SOAP来收集信息并以分布式方式自动检查垃圾邮件。与以前的垃圾邮件过滤器着重于解析关键字(例如,贝叶斯过滤器)或建立黑名单不同,SOAP利用电子邮件通讯员之间的社交关系及其(无)兴趣来自适应地自动检测垃圾邮件。在每个节点中,SOAP将四个组件集成到基本的贝叶斯过滤器中:基于社交亲密性的垃圾邮件过滤,基于社交兴趣的垃圾邮件过滤,自适应信任管理和朋友通知。我们使用基于Facebook跟踪数据的模拟评估了SOAP的性能。我们还为实际实验实现了SOAP原型。实验结果表明,SOAP可以在准确性,攻击弹性和垃圾邮件检测效率方面极大地提高贝叶斯垃圾邮件过滤器的性能。贝叶斯垃圾邮件过滤器的性能是SOAP的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号