首页> 外文期刊>Computers, IEEE Transactions on >Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers
【24h】

Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers

机译:异构数据中心中的功率和热感知工作负载分配

获取原文
获取原文并翻译 | 示例

摘要

Many of today’s data centers experience physical limitations on the power needed to run the data center. The first problem that we study is maximizing the performance (quantified by the reward collected for completing tasks by their individual deadlines) of a data center that is subject to total power consumption (of compute nodes and CRAC units) and thermal constraints. The second problem that we study is how to minimize the power consumption in a data center while guaranteeing that the overall performance does not drop below a specified threshold. For both problems, we develop novel optimization techniques for assigning the performance states of cores at the data center level to optimize the operation of the data center. The resource allocation (assignment) techniques in this paper are thermal aware as they consider effects of performance state assignments on temperature and power consumption by the CRAC units. Our simulation studies show that in some cases our assignment technique achieves about 17% average improvement in the reward collected, and about 9% reduction in power consumption compared to an assignment technique that only considers putting a core in the performance state with the highest performance or turning the core off.
机译:当今许多数据中心在运行数据中心所需的电源方面受到物理限制。我们研究的第一个问题是最大化数据中心的性能(根据完成任务所获得的报酬(按其各自的截止日期来量化)),该数据中心的总功耗(计算节点和CRAC单元的总功耗)和散热限制。我们研究的第二个问题是如何在确保整体性能不低于指定阈值的同时最小化数据中心的功耗。针对这两个问题,我们开发了新颖的优化技术,用于在数据中心级别分配内核的性能状态,以优化数据中心的运行。本文中的资源分配(分配)技术具有热意识,因为它们考虑了性能状态分配对CRAC单元的温度和功耗的影响。我们的仿真研究表明,与仅考虑将内核置于性能最高或性能最高的分配技术相比,在某些情况下,我们的分配技术可将获得的奖励平均提高17%,并将功耗降低9%。关闭核心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号