首页> 外文期刊>IEEE Transactions on Computers >Joint Optimization of Task Scheduling and Image Placement in Fog Computing Supported Software-Defined Embedded System
【24h】

Joint Optimization of Task Scheduling and Image Placement in Fog Computing Supported Software-Defined Embedded System

机译:雾计算支持的软件定义嵌入式系统中任务调度和图像放置的联合优化

获取原文
获取原文并翻译 | 示例

摘要

Traditional standalone embedded system is limited in their functionality, flexibility, and scalability. Fog computing platform, characterized by pushing the cloud services to the network edge, is a promising solution to support and strengthen traditional embedded system. Resource management is always a critical issue to the system performance. In this paper, we consider a fog computing supported software-defined embedded system, where task images lay in the storage server while computations can be conducted on either embedded device or a computation server. It is significant to design an efficient task scheduling and resource management strategy with minimized task completion time for promoting the user experience. To this end, three issues are investigated in this paper: 1) how to balance the workload on a client device and computation servers, i.e., task scheduling, 2) how to place task images on storage servers, i.e., resource management, and 3) how to balance the I/O interrupt requests among the storage servers. They are jointly considered and formulated as a mixed-integer nonlinear programming problem. To deal with its high computation complexity, a computation-efficient solution is proposed based on our formulation and validated by extensive simulation based studies.
机译:传统的独立嵌入式系统在功能,灵活性和可伸缩性方面受到限制。雾计算平台的特点是将云服务推向网络边缘,是支持和增强传统嵌入式系统的有前途的解决方案。资源管理始终是系统性能的关键问题。在本文中,我们考虑了雾计算支持的软件定义的嵌入式系统,其中任务映像位于存储服务器中,而计算可以在嵌入式设备或计算服务器上进行。设计有效的任务调度和资源管理策略,以最小的任务完成时间来提升用户体验,具有重要意义。为此,本文研究了三个问题:1)如何在客户端设备和计算服务器上平衡工作负载,即任务调度; 2)如何在存储服务器上放置任务映像,即资源管理;以及3 )如何在存储服务器之间平衡I / O中断请求。它们被共同考虑并表述为混合整数非线性规划问题。为了解决其较高的计算复杂性,在我们的公式基础上提出了一种计算有效的解决方案,并通过大量基于仿真的研究对其进行了验证。

著录项

  • 来源
    《IEEE Transactions on Computers》 |2016年第12期|3702-3712|共11页
  • 作者单位

    Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China;

    Service Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China;

    Department of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Japan;

    Department of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Japan;

    School of Information Technology, Deakin University, Melbourne, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Servers; Embedded systems; Processor scheduling; Image edge detection; Resource management; Minimization; Fog computing;

    机译:服务器;嵌入式系统;处理器调度;图像边缘检测;资源管理;最小化;雾计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号