首页> 外文期刊>IEEE Transactions on Computers >Big-Data Streaming Applications Scheduling Based on Staged Multi-Armed Bandits
【24h】

Big-Data Streaming Applications Scheduling Based on Staged Multi-Armed Bandits

机译:分阶段多目标强盗的大数据流应用调度

获取原文
获取原文并翻译 | 示例

摘要

Several techniques have been recently proposed to adapt Big-Data streaming applications to existing many core platforms. Among these techniques, online reinforcement learning methods have been proposed that learn how to adapt at run-time the throughput and resources allocated to the various streaming tasks depending on dynamically changing data stream characteristics and the desired applications performance (e.g., accuracy). However, most of state-of-the-art techniques consider only one single stream input in its application model input and assume that the system knows the amount of resources to allocate to each task to achieve a desired performance. To address these limitations, in this paper we propose a new systematic and efficient methodology and associated algorithms for online learning and energy-efficient scheduling of Big-Data streaming applications with multiple streams on many core systems with resource constraints. We formalize the problem of multi-stream scheduling as a staged decision problem in which the performance obtained for various resource allocations is unknown. The proposed scheduling methodology uses a novel class of online adaptive learning techniques which we refer to as staged multi-armed bandits (S-MAB). Our scheduler is able to learn online which processing method to assign to each stream and how to allocate its resources over time in order to maximize the performance on the fly, at run-time, without having access to any offline information. The proposed scheduler, applied on a face detection streaming application and without using any offline information, is able to achieve similar performance compared to an optimal semi-online solution that has full knowledge of the input stream where the differences in throughput, observed quality, resource usage and energy efficiency are less than 1, 0.3, 0.2 and 4 percent respectively.
机译:最近提出了几种技术来使大数据流应用程序适应现有的许多核心平台。在这些技术中,已经提出了在线强化学习方法,该方法学习如何在运行时根据动态变化的数据流特性和期望的应用性能(例如准确性)来适应分配给各种流任务的吞吐量和资源。但是,大多数最新技术在其应用程序模型输入中仅考虑一个流输入,并假定系统知道分配给每个任务以实现所需性能的资源量。为了解决这些限制,在本文中,我们提出了一种新的系统高效的方法和相关算法,用于在资源受限的许多核心系统上对具有多个流的大数据流应用程序进行在线学习和节能调度。我们将多流调度问题形式化为一个分阶段的决策问题,其中对于各种资源分配获得的性能未知。拟议的调度方法使用了一类新颖的在线自适应学习技术,我们将其称为分阶段多臂土匪(S-MAB)。我们的调度程序能够在线学习分配给每个流的处理方法以及如何随时间分配资源,以便在运行时最大化运行中的性能,而无需访问任何离线信息。拟议的调度程序应用在人脸检测流应用程序上,并且不使用任何脱机信息,与具有完全了解输入流(其中吞吐量,观察到的质量,资源的差异)的最佳半在线解决方案相比,能够实现类似的性能用量和能源效率分别低于1%,0.3%,0.2%和4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号