首页> 外文期刊>IEEE Transactions on Computers >MEMORY-Based Hardware Architectures to Detect ClamAV Virus Signatures with Restricted Regular Expression Features
【24h】

MEMORY-Based Hardware Architectures to Detect ClamAV Virus Signatures with Restricted Regular Expression Features

机译:基于内存的硬件体系结构,用于检测具有受限正则表达式功能的ClamAV病毒签名

获取原文
获取原文并翻译 | 示例

摘要

We aim to implement a single-chip hardware detection engine for virus scanning. Our study is based on the ClamAV virus database, which contains 88.9K strings and 9.6K extended hex-signatures with restricted regular expression (regex) features. We have previously presented cost-effective hardware architectures to detect the 88.9K strings and 3.2K regex patterns that are composed of multiple string segments. In this paper, we shall present hardware architectures to detect the remaining 6.4K regex patterns. Our method is based on the approach. We transform the byte-oriented matching problem to a token-based matching problem. A regex pattern contains one or more segments, and a segment may be subdivided into multiple non-trivial tokens. In general, a token is associated with one or a few regexes only. The input byte-stream is converted into a token-stream using dedicated hardware units, where the number of tokens is much less than the number of bytes. The token-stream is processed by a NFA-based to determine if any segment can be found. Detected segments are further processed by a to determine if any multi-segment pattern can be found. For proof-of-concept, our method is implemented on a Virtex-6 FPGA which consumes 1.84 MB on-chip memory.
机译:我们旨在实现用于病毒扫描的单芯片硬件检测引擎。我们的研究基于ClamAV病毒数据库,该数据库包含88.9K字符串和9.6K扩展的具有受限正则表达式(regex)功能的十六进制签名。我们之前已经提出了具有成本效益的硬件体系结构,以检测由多个字符串段组成的88.9K字符串和3.2K正则表达式模式。在本文中,我们将介绍用于检测其余6.4K正则表达式模式的硬件体系结构。我们的方法基于该方法。我们将面向字节的匹配问题转换为基于令牌的匹配问题。正则表达式模式包含一个或多个段,并且一个段可以细分为多个非平凡的标记。通常,令牌仅与一个或几个正则表达式相关联。使用专用硬件单元将输入的字节流转换为令牌流,其中令牌的数量远少于字节的数量。令牌流由基于NFA的处理过程确定是否可以找到任何段。被检测到的片段由a进一步处理,以确定是否可以找到任何多片段模式。为了进行概念验证,我们的方法在消耗1.84 MB片内存储器的Virtex-6 FPGA上实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号