首页> 外文期刊>IEEE Transactions on Computers >NIPD: Non-Intrusive Power Disaggregation in Legacy Datacenters
【24h】

NIPD: Non-Intrusive Power Disaggregation in Legacy Datacenters

机译:NIPD:传统数据中心中的非侵入式功率分配

获取原文
获取原文并翻译 | 示例

摘要

Fine-grained power monitoring, which refers to power monitoring at the server level, is critical to the efficient operation and energy saving of datacenters. Fined-grained power monitoring, however, is extremely challenging in legacy datacenters that host server systems not equipped with power monitoring sensors. Installing power monitoring hardware at the server level not only incurs high costs but also complicates the maintenance of high-density server clusters and enclosures. In this paper, we present a zero-cost, purely software-based solution to this challenging problem. We use a novel technique of non-intrusive power disaggregation (NIPD) that establishes power mapping functions (PMFs) between the states of servers and their power consumption, and infer the power consumption of each server with the aggregated power of the entire datacenter. The PMFs that we have developed can support both linear and nonlinear power models via the state feature transformation. To reduce the training overhead, we further develop adaptive PMFs update strategies and ensure that the training data and state features are appropriately selected. We implement and evaluate NIPD over a real-world datacenter with 326 nodes. The results show that our solution can provide high precision power estimation at both rack level and server level. In specific, with PMFs including only two nonlinear terms, our power estimation i) at rack level has mean relative error of 2.18 percent, and ii) at server level has mean relative errors of 9.61 and 7.53 percent corresponding to the idle and peak power, respectively.
机译:细粒度的电源监控(指服务器级别的电源监控)对于数据中心的高效运行和节能至关重要。但是,在托管未配备功率监视传感器的服务器系统的旧数据中心中,细粒度的功率监视非常具有挑战性。在服务器级别安装电源监视硬件不仅会导致高昂的成本,而且还会使高密度服务器群集和机箱的维护复杂化。在本文中,我们提出了一个零成本的,纯粹基于软件的解决方案来解决这一具有挑战性的问题。我们使用一种非侵入式功率分解(NIPD)的新技术,该技术在服务器状态与其功耗之间建立功率映射功能(PMF),并使用整个数据中心的总功耗来推断每个服务器的功耗。我们开发的PMF可以通过状态特征转换支持线性和非线性功率模型。为了减少训练开销,我们进一步开发了自适应PMF更新策略,并确保适当选择了训练数据和状态特征。我们在具有326个节点的真实数据中心上实现和评估NIPD。结果表明,我们的解决方案可以在机架级和服务器级提供高精度的功率估算。具体来说,在PMF仅包含两个非线性项的情况下,我们的功率估计i)在机架级别的平均相对误差为2.18%,ii)在服务器级别的平均相对误差为9.61和7.53%,分别对应于空闲功率和峰值功率,分别。

著录项

  • 来源
    《IEEE Transactions on Computers》 |2017年第2期|312-325|共14页
  • 作者单位

    Department of Computer Science, University of Victoria, Victoria, BC, Canada;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, China;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, China;

    Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, China;

    Department of Computer Science, University of Victoria, Victoria, BC, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Servers; Monitoring; Power demand; Hardware; Sensors; Training; Power measurement;

    机译:服务器;监控;功率需求;硬件;传感器;培训;功率测量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号