首页> 外文期刊>Computers & Graphics >Blind motion deblurring via L_0 sparse representation
【24h】

Blind motion deblurring via L_0 sparse representation

机译:通过L_0稀疏表示盲运动脱模

获取原文
获取原文并翻译 | 示例

摘要

The method of blind deblurring based on machine learning can effectively deal with the blurred images in the real world. However, existing multi-level architectures can lead to problems such as the inability to reserve edges, the expected introduction of artifacts and ghosts when deblurring. Multi methods have found that using L-0 norm to realize image sparse representation can help keeping main structure of images. In this paper, an edge extraction module based on L-0 sparse representation is proposed to preserve the edge of images, which is embedded in a multi-scale recurrent network(SRN). When the current scale transmits information to the next scale, edge enhancement is performed using the edge extraction module. Furthermore, considering the correlation among pixels and the correlation among channels, we introduce dual-attention mechanism into the encoder-decoder structure. The deblurring experiment was carried out on the GOPRO dataset. Comparing with 5 state-of-art methods qualitatively and quantitatively, the experimental results show that the proposed method can better preserve the image edges and effectively avoid the artifact of the image. And the peak signal-to-noise ratio of the proposed method are improved compared with other methods. (C) 2021 Elsevier Ltd. All rights reserved.
机译:基于机器学习的盲去欺骗方法可以有效地应对现实世界中的模糊图像。然而,现有的多级架构可能导致如无法预留边缘的问题,在去纹理时预期引入伪影和鬼魂。多种方法发现,使用L-0标准实现图像稀疏表示可以帮助保持图像的主要结构。在本文中,提出了一种基于L-0稀疏表示的边缘提取模块,以保留嵌入在多尺度反复网络(SRN)中的图像的边缘。当当前刻度向下一个比例传输信息时,使用边缘提取模块执行边缘增强。此外,考虑到像素之间的相关性和信道之间的相关性,我们将双关注机构引入编码器 - 解码器结构。在Gopro数据集上进行了去掩盖实验。与5定性和定量的方法相比,实验结果表明,该方法可以更好地保留图像边缘并有效地避免图像的伪像。与其他方法相比,所提出的方法的峰值信噪比得到改善。 (c)2021 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号