首页> 外文期刊>Computers & Graphics >Subjective and no-reference quality metric of domain independent images and videos
【24h】

Subjective and no-reference quality metric of domain independent images and videos

机译:域独立图像和视频的主观和无参考质量指标

获取原文
获取原文并翻译 | 示例

摘要

There has been an unprecedented explosion in creation and consumption of high definition videos and images. This has led to the development and adoption of several systems which manipulate graphic content. Most of these systems require a robust, no-reference, domain independent, and subjective quality metric. The state-of-the-art algorithms aimed at no-reference quality assessment of images and videos employ neural networks that are content domain dependent and require application specific training. Further, present systems are trained to estimate quality metric in accordance to objective metrics such as Peak Signal to Noise Ratio or Mean Squared Error. We propose a convolutional neural network architecture that leverages a variable length long short term memory. The model will also make use of the Laplacian as a fourth layer in the input to ensure content domain independence in quality estimation. The system has been trained on the images of KonIQ-10K dataset and tested on KonViD-1k video dataset and LIVE video dataset. It has also been tested on 10 0 0 frames and videos from the VIRAT dataset and images from BSD300 and Set5 datasets with artificial blur and distortion applied. The quality estimations were compared to the mean opinion square given by five human viewers and resulted in a 11% root mean squared error. Thus the proposed model provides a subjective quality estimation of graphic content without any dependence on the domain of the content.(c) 2021 Elsevier Ltd. All rights reserved.
机译:在高清视频和图像的创建和消费中存在前所未有的爆炸。这导致了多个操作图形内容的系统的开发和采用。这些系统中的大多数需要强大,无参考,域独立和主观质量指标。最先进的算法,用于图像和视频的无参考质量评估,采用内容域的神经网络依赖,并需要特定于应用程序的培训。此外,根据诸如峰值信号的客观度量或均方平方误差验证,培训本系统以训练以估计质量度量。我们提出了一种卷积神经网络架构,其利用可变长度的长期短期存储器。该模型还将使用Laplacian作为输入中的第四层,以确保质量估计中的内容域独立性。该系统已在KONIQ-10K数据集的图像上培训并在KONVID-1K视频数据集和实时视频数据集上进行测试。它还在10 0 0帧和来自Virat DataSet的视频和来自BSD300的图像的视频进行了测试,并使用人为模糊的SET5数据集和应用。将质量估计与五个人类观众给出的平均意见广场进行了比较,导致11%的根均匀误差。因此,所提出的模型提供了图形内容的主观质量估计,而不对内容的域的任何依赖性。(c)2021 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号