首页> 外文期刊>Computers & Graphics >PIG-Net: Inception based deep learning architecture for 3D point cloud segmentation
【24h】

PIG-Net: Inception based deep learning architecture for 3D point cloud segmentation

机译:猪网:3D点云分割的基于深度学习架构

获取原文
获取原文并翻译 | 示例

摘要

Point clouds, being the simple and compact representation of surface geometry of 3D objects, have gained increasing popularity with the evolution of deep learning networks for classification and segmentation tasks. Unlike human, teaching the machine to analyze the segments of an object is a challenging task and quite essential in various machine vision applications. In this paper, we address the problem of segmentation and labelling of the 3D point clouds by proposing a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds. In PIG-Net, the local features are extracted from the transformed input points using the proposed inception layers and then aligned by feature transform. These local features are aggregated using the global average pooling layer to obtain the global features. Finally, feed the concatenated local and global features to the convolution layers for segmenting the 3D point clouds. We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets, namely, ShapeNet [1] and PartNet [2] . We evaluate the effectiveness of our network by performing ablation study.(c) 2021 Elsevier Ltd. All rights reserved.
机译:点云,是3D对象的表面几何形状的简单且紧凑的表示,随着对分类和分割任务的深度学习网络的演变而产生的越来越受欢迎。与人类不同,教导机器分析对象的段是一个具有挑战性的任务,并且在各种机器视觉应用中非常重要。在本文中,我们通过提出一种名为猪网的深网络架构来解决3D点云的分割和标记的问题,有效地表征了点云的本地和全局几何细节。在猪网中,使用所提出的成立层从变换的输入点中提取局部特征,然后通过特征变换对齐。这些本地功能使用全局平均池层聚合来获取全局功能。最后,将连接的本地和全局功能送到卷积层,以分割3D点云。我们对两个最先进的数据集进行猪净架构的详尽实验分析,即ShapeNet [1]和PartNet [2]。我们通过执行消融研究来评估我们网络的有效性。(c)2021 Elsevier Ltd.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号