首页> 外文期刊>Computers & Graphics >The effect of task on classification accuracy: Using gesture recognition techniques in free-sketch recognition
【24h】

The effect of task on classification accuracy: Using gesture recognition techniques in free-sketch recognition

机译:任务对分类准确性的影响:在自由草图识别中使用手势识别技术

获取原文
获取原文并翻译 | 示例

摘要

Generating, grouping, and labeling free-sketch data is a difficult and time-consuming task for both user study participants and researchers. To simplify this process for both parties, we would like to have users draw isolated shapes instead of complete sketches that must be hand-labeled and grouped, and then use this data to train our free-sketch symbol recognizer. However, it is an open question whether shapes drawn in isolation accurately reflect the way users draw shapes in a complete diagram. To answer this question, we present a systematic exploration of the effect of task on recognition accuracy using three different recognizers. Our study examines how task affects accuracy in the context of user-independent, user semi-dependent and user-dependent training data. We find that as the amount of user-specific training data increases, the effect of task on recognition accuracy also increases. We also show that the best overall recognition results are obtained by using user semi-dependent, task-specific training data. These results hold across three different domains: circuit diagrams, entity relationship diagrams and process diagrams. Finally, we introduce a variant of a popular and simple gesture recognition algorithm that recognizes freely drawn shapes as well as a highly accurate but more complex recognizer designed explicitly for free-sketch recognition.
机译:对于用户研究参与者和研究人员而言,生成,分组和标记自由草图数据都是一项困难且耗时的任务。为了简化双方的流程,我们希望用户绘制孤立的形状,而不是必须手工标记和分组的完整草图,然后使用此数据来训练我们的自由草图符号识别器。但是,孤立地绘制形状是否准确反映用户在完整图中绘制形状的方式是一个悬而未决的问题。为了回答这个问题,我们使用三种不同的识别器对任务对识别准确性的影响进行了系统的探索。我们的研究考察了任务如何在与用户无关,与用户半相关和与用户有关的培训数据中影响准确性。我们发现,随着特定于用户的训练数据量的增加,任务对识别准确性的影响也随之增加。我们还表明,通过使用用户半依赖的,特定于任务的训练数据可以获得最佳的总体识别结果。这些结果跨越三个不同的领域:电路图,实体关系图和过程图。最后,我们介绍了一种流行且简单的手势识别算法的变体,该算法可以识别自由绘制的形状以及为自由草图识别而专门设计的高度准确但更复杂的识别器。

著录项

  • 来源
    《Computers & Graphics》 |2010年第5期|p.499-512|共14页
  • 作者单位

    Harvey Mudd College, Department of Computer Science, Claremont, CA, USA;

    rnHarvey Mudd College, Department of Computer Science, Claremont, CA, USA;

    rnUniversity of California: Riverside, Department of Mechanical Engineering, Riverside, CA, USA;

    rnHarvey Mudd College, Department of Computer Science, Claremont, CA, USA;

    rnUniversity of California: Riverside, Department of Mechanical Engineering, Riverside, CA, USA;

    rnHarvey Mudd College, Department of Computer Science, Claremont, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    interaction styles; classifier design and evaluation; interactive systems;

    机译:互动方式;分类器设计和评估;互动系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号