首页> 外文期刊>Computers & geosciences >Joint simulation of compositional and categorical data via direct sampling technique - Application to improve mineral resource confidence
【24h】

Joint simulation of compositional and categorical data via direct sampling technique - Application to improve mineral resource confidence

机译:通过直接采样技术对组成和分类数据进行联合模拟-用于提高矿产资源置信度的应用

获取原文
获取原文并翻译 | 示例

摘要

Ore deposits usually consist of ore materials with different discrete (e.g. rock and alteration types) and continuous (e.g. geochemical and mineral composition) features. Financial feasibility studies are highly dependent on the modelling of these features and their associated joint uncertainties. Few geostatistical techniques have been developed for the joint modelling of high-dimensional mixed data (continuous and categorical) or constrained data, such as compositional data. The compositional nature of the mineral and geochemical data induces several challenges for multivariate geostatistical techniques, because such data carry relative information and are known for spurious statistical and spatial correlation effects. This paper investigates the application of the direct sampling algorithm for joint modelling of compositional and categorical data. In some mining projects the amount of available data may be enormous in some parts of the deposit and if the density of measurements is sufficient, multivariate geospatial patterns can be derived from that data and be simulated (without model inference) at other undersampled areas of the deposit with similar characteristics. In this context, the direct sampling multiple-point simulation method can be implemented for this reconstruction process. The compositional nature of the data is addressed via implementing an isometric log-ratio transformation. The approach is illustrated through two case studies, one synthetic and one real. The accuracy of the results is checked against a set of validation data, revealing the potential of the proposed methodology for joint modelling of compositional and categorical information. The direct sampling technique can be considered as a smart move to assess the future risk and uncertainty of a resource by making use of all the information hidden within the early data.
机译:矿床通常由具有不同离散(例如岩石和蚀变类型)和连续(例如地球化学和矿物组成)特征的矿石材料组成。财务可行性研究高度依赖于这些功能及其相关联的不确定因素的建模。对于高维混合数据(连续和分类)或受约束数据(例如成分数据)的联合建模,很少开发出地统计技术。矿物和地球化学数据的成分性质对多变量地统计技术提出了一些挑战,因为此类数据带有相对信息,并且因虚假的统计和空间相关效应而闻名。本文研究了直接采样算法在成分和分类数据的联合建模中的应用。在某些采矿项目中,矿床某些部分的可用数据量可能很大,如果测量的密度足够,则可以从该数据中得出多元地理空间格局,并在该地区其他欠采样地区进行模拟(无模型推断)。具有相似特征的矿床。在这种情况下,可以为此重建过程实现直接采样多点模拟方法。数据的组成性质通过实施等距对数比转换解决。通过两个案例研究说明了该方法,其中一个是综合案例,一个是真实案例。针对一组验证数据检查了结果的准确性,从而揭示了所提出的方法可以对组成和分类信息进行联合建模的潜力。通过使用隐藏在早期数据中的所有信息,可以将直接采样技术视为评估资源的未来风险和不确定性的明智之举。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号