首页> 外文期刊>Computers & geosciences >Multi-class supervised classification of electrical borehole wall images using texture features
【24h】

Multi-class supervised classification of electrical borehole wall images using texture features

机译:使用纹理特征对电气井壁图像进行多类监督分类

获取原文
获取原文并翻译 | 示例

摘要

Electrical borehole wall images represent micro-resistivity measurements at the borehole wall. The lithology reconstruction is often based on visual interpretation done by geologists. This analysis is very time-consuming and subjective. Different geologists may interpret the data differently. In this work, linear discriminant analysis (LDA) in combination with texture features is used for an automated lithology reconstruction of ODP (Ocean Drilling Program) borehole 1203A drilled during Leg 197. Six rock groups are identified by their textural properties in resistivity data obtained by a Formation MircoScanner (FMS). Although discriminant analysis can be used for multi-class classification, non-optimal decision criteria for certain groups could emerge. For this reason, we use a combination of 2-class (binary) classifiers to increase the overall classification accuracy. The generalization ability of the combined classifiers is evaluated and optimized on a testing dataset where a classification rate of more than 80% for each of the six rock groups is achieved. The combined, trained classifiers are then applied on the whole dataset obtaining a statistical reconstruction of the logged formation. Compared to a single multi-class classifier the combined binary classifiers show better classification results for certain rock groups and more stable results in larger intervals of equal rock type.
机译:井壁电图像表示井壁处的微电阻率测量。岩性重建通常基于地质学家的视觉解释。这种分析非常耗时且主观。不同的地质学家可能对数据的解释不同。在这项工作中,将线性判别分析(LDA)与纹理特征相结合,用于对在Leg 197期间钻探的ODP(海洋钻探计划)井眼1203A进行自动岩性重建。通过电阻率数据获得的六个岩石组的质地属性来确定编队MircoScanner(FMS)。尽管判别分析可用于多类分类,但某些群体的非最佳决策标准可能会出现。因此,我们使用2类(二进制)分类器的组合来提高整体分类的准确性。在测试数据集上评估和优化了组合分类器的泛化能力,对六个岩石组中的每个岩石组,分类率均达到80%以上。然后,将经过组合,训练有素的分类器应用于整个数据集,以获得对测井地层的统计重建。与单个多类别分类器相比,组合的二元分类器对某些岩石组显示出更好的分类结果,并且在相同岩石类型的较大间隔中显示出更稳定的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号