机译:使用纹理特征对电气井壁图像进行多类监督分类
Fraunhofer Institute for Applied Information Technology, D-53754 Schloss Birlinghoven, Germany;
Institute for Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen University Mathieustr. 6, D-52074 Aachen, Germany,Baker Hughes, Drilling & Evaluation Research, Houston Technology Center, 2001 Rankin Road, Houston, TX 77073, United States;
Institute for Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen University Mathieustr. 6, D-52074 Aachen, Germany;
Fraunhofer Institute for Applied Information Technology, D-53754 Schloss Birlinghoven, Germany;
Landslide susceptibility mapping; Subjective geomorphic mapping; Artificial Neural Networks (ANN); Learning Vector Quantization (LVQ); Geographic Information Systems (CIS);
机译:基于电井壁图像中电阻率模式的岩石分类
机译:基于电井壁图像中电阻率模式的岩石分类
机译:遥感图像监督分类的组合细节增强算法和纹理特征提取方法
机译:基于电钻壁图像纹理分析的自动岩石分类
机译:用于图像分割和分类的新颖纹理特征和技术。
机译:通过激活和优化特征提取对垂体肿瘤的图像纹理分类的半监督方法
机译:使用代表性空间纹理的监督图像分类算法:应用于Covid-19使用CT图像的诊断
机译:利用有监督的多尺度纹理特征分类器对中非JERs-1图像拼接进行分类