首页> 外文期刊>Computers,environment and urban systems >A polygon aggregation method with global feature preservation using superpixel segmentation
【24h】

A polygon aggregation method with global feature preservation using superpixel segmentation

机译:一种利用超像素分割保持全局特征的多边形聚合方法

获取原文
获取原文并翻译 | 示例

摘要

As the map scale decreases, conflicts can appear among polygonal features such as water areas and buildings. Aggregation is usually employed to clearly represent polygonal features on small-scale maps. Over the past several decades, a number of polygon aggregation algorithms based on vector data have been proposed by various scholars. In contrast, few existing aggregation methods are based on raster data, and it is difficult to simultaneously consider polygonal features with different shape characteristics such as water areas and buildings. However, with the continuous development and progress of computer vision technology, advanced theories and methods, such as superpixel segmentation, have provided brand new opportunities and challenges for polygon aggregation. Both superpixel segmentation and area object aggregation employ spatial clustering to increase the representation level at a coarser resolution. Therefore, this paper proposes a new algorithm called superpixel polygon aggregation (SUPA) for the aggregation of general polygons and buildings based on raster data. In this method, general polygons are first segmented using superpixel algorithms. Then, general polygons are globally aggregated by superpixel selection. In this process, the different semantic characteristics of an object, such as a building or natural water area, control the aggregation decisions, such as the handling of boundaries. Finally, the aggregate boundaries of general polygons (buildings) are locally adjusted by Fourier descriptors (superpixel filling and removal). To test the proposed SUPA method, both water areas and buildings are used to perform aggregation. Compared with the existing traditional method in ArcGIS software, the results show that the proposed SUPA method can preserve the global features of general polygons and the orthogonal features of buildings while maintaining reliable aggregation results.
机译:随着地图比例的减小,诸如水域和建筑物之类的多边形要素之间可能会出现冲突。通常使用聚合来清晰地表示小比例尺地图上的多边形要素。在过去的几十年中,许多学者提出了许多基于矢量数据的多边形聚合算法。相反,现有的聚合方法很少基于栅格数据,并且很难同时考虑具有不同形状特征的多边形要素,例如水域和建筑物。然而,随着计算机视觉技术的不断发展和进步,诸如超像素分割等先进的理论和方法为多边形聚合提供了崭新的机遇和挑战。超像素分割和区域对象聚合都采用空间聚类,以较粗的分辨率提高表示级别。因此,本文提出了一种新的算法,称为超像素多边形聚合(SUPA),用于基于栅格数据的常规多边形和建筑物的聚合。在这种方法中,首先使用超像素算法对普通多边形进行分割。然后,通过超像素选择来全局聚合常规多边形。在此过程中,对象(例如建筑物或自然水域)的不同语义特征控制着聚合决策,例如边界的处理。最后,一般多边形(建筑物)的聚合边界通过傅立叶描述符(超像素填充和移除)进行局部调整。为了测试建议的SUPA方法,将水域和建筑物都用于执行聚合。结果表明,与ArcGIS软件中现有的传统方法相比,SUPA方法可以在保持可靠的聚合结果的同时,保留一般多边形的全局特征和建筑物的正交特征。

著录项

  • 来源
    《Computers,environment and urban systems》 |2019年第5期|117-131|共15页
  • 作者单位

    Wuhan Univ, Sch Resource & Environm Sci Sci, 129 LuoYu Rd, Wuhan 430072, Peoples R China|Wuhan Univ, 129 LuoYu Rd, Wuhan 430072, Peoples R China|Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany;

    Wuhan Univ, Sch Resource & Environm Sci Sci, 129 LuoYu Rd, Wuhan 430072, Peoples R China|Wuhan Univ, 129 LuoYu Rd, Wuhan 430072, Peoples R China;

    Wuhan Univ, Sch Resource & Environm Sci Sci, 129 LuoYu Rd, Wuhan 430072, Peoples R China|Wuhan Univ, 129 LuoYu Rd, Wuhan 430072, Peoples R China;

    Wuhan Univ, Sch Resource & Environm Sci Sci, 129 LuoYu Rd, Wuhan 430072, Peoples R China|Wuhan Univ, 129 LuoYu Rd, Wuhan 430072, Peoples R China;

    Leibniz Univ Hannover, Inst Cartog & Geoinformat, Hannover, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polygon aggregation; Map generalization; Superpixel segmentation;

    机译:多边形聚合;地图泛化;超像素分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号