首页> 外文期刊>Computers,environment and urban systems >Adaptive detection of spatial point event outliers using multilevel constrained Delaunay triangulation
【24h】

Adaptive detection of spatial point event outliers using multilevel constrained Delaunay triangulation

机译:使用多级约束Delaunay三角剖分的空间点事件离群值的自适应检测

获取原文
获取原文并翻译 | 示例

摘要

Spatial outlier detection is a research hot spot in the field of spatial data mining. Because of the lack of specific research on spatial point events, this study presents an adaptive approach for spatial point events outlier detection (SPEOD) using multilevel constrained Delaunay triangulation. First, the spatial proximity relationships between spatial point events are roughly captured by Delaunay triangulation. Then, three-level constraints are described and used to refine spatial proximity relationships with the consideration of statistical characteristics. Finally, those spatial point events connected by remaining edges are gathered to form a series of subgraphs. Those subgraphs containing very few point events are regarded as spatial outliers. Experiments on both synthetic and real-world spatial data sets are used to show that the proposed SPEOD algorithm can detect various types of spatial point event outliers with high efficiency. Moreover, there is no need to input any parameter in SPEOD. (C) 2016 Elsevier Ltd. All rights reserved.
机译:空间离群值检测是空间数据挖掘领域的研究热点。由于缺乏对空间点事件的专门研究,因此本研究提出了一种使用多级约束Delaunay三角剖分的空间点事件离群值检测(SPEOD)的自适应方法。首先,通过Delaunay三角剖分大致捕获了空间点事件之间的空间邻近关系。然后,描述了三级约束,并使用三约束来考虑统计特性来完善空间邻近关系。最后,通过剩余边连接的那些空间点事件被收集以形成一系列子图。那些包含很少点事件的子图被视为空间离群值。通过对合成和真实空间数据集进行的实验表明,所提出的SPEOD算法可以高效地检测各种类型的空间点事件离群值。此外,无需在SPEOD中输入任何参数。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号