首页> 外文期刊>Computers,environment and urban systems >OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks
【24h】

OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks

机译:OSMnx:用于获取,构建,分析和可视化复杂街道网络的新方法

获取原文
获取原文并翻译 | 示例

摘要

Urban scholars have studied street networks in various ways, but there are data availability and consistency limitations to the current urban planning/street network analysis literature. To address these challenges, this article presents OSMnx, a new tool to make the collection of data and creation and analysis of street networks simple, consistent, automatable and sound from the perspectives of graph theory, transportation, and urban design. OSMnx contributes five significant capabilities for researchers and practitioners: first, the automated downloading of political boundaries and building footprints; second, the tailored and automated downloading and constructing of street network data from OpenStreetMap; third, the algorithmic correction of network topology; fourth, the ability to save street networks to disk as shapefiles, GraphML, or SVG files; and fifth, the ability to analyze street networks, including calculating routes, projecting and visualizing networks, and calculating metric and topological measures. These measures include those common in urban design and transportation studies, as well as advanced measures of the structure and topology of the network. Finally, this article presents a simple case study using OSMnx to construct and analyze street networks in Portland, Oregon. (C) 2017 Elsevier Ltd. All rights reserved.
机译:城市学者以各种方式研究了街道网络,但是当前的城市规划/街道网络分析文献存在数据可用性和一致性局限性。为了解决这些挑战,本文介绍了OSMnx,这是一种新工具,可从图论,交通和城市设计的角度简化,一致,可自动化和健全地收集数据以及创建和分析街道网络。 OSMnx为研究人员和从业人员提供了五项重要功能:首先,自动下载政治边界和建立足迹。第二,从OpenStreetMap量身定制和自动下载和构建街道网络数据;第三,网络拓扑的算法校正;第四,能够将街道网络以shapefile,GraphML或SVG文件保存到磁盘的功能;第五,具有分析街道网络的能力,包括计算路线,对网络进行投影和可视化以及计算度量和拓扑度量。这些措施包括城市设计和交通研究中常见的措施,以及网络结构和拓扑的高级措施。最后,本文提供了一个简单的案例研究,使用OSMnx在俄勒冈州波特兰市构建和分析街道网络。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号