首页> 外文期刊>Computers & Digital Techniques, IET >Multi-objective optimisations for a superscalar architecture with selective value prediction
【24h】

Multi-objective optimisations for a superscalar architecture with selective value prediction

机译:具有选择值预测的超标量体系结构的多目标优化

获取原文
获取原文并翻译 | 示例

摘要

This work extends an earlier manual design space exploration (DSE) of the authors?? developed selective load value prediction-based superscalar architecture to the L2 unified cache. After that the authors perform an automatic DSE using a special developed software tool by varying several architectural parameters. The goal is to find optimal configurations in terms of cycles per instruction and energy consumption. By varying 19 architectural parameters, as the authors proposed, the design space is over 2.5 millions of billions configurations which obviously means that only a heuristic search can be considered. Therefore the authors propose different methods of automatic DSE based on their developed framework for automatic design space exploration which allow them to evaluate only 2500 configurations of the above mentioned huge design space! The experimental results show that their automatic DSE provides significantly better configurations than the previous manual DSE approach, considering the proposed multi-objective approach.
机译:这项工作扩展了作者的早期手动设计空间探索(DSE)?针对L2统一缓存开发了基于选择性负载值预测的超标量体系结构。之后,作者通过更改几个架构参数,使用专门开发的软件工具执行自动DSE。目的是在每条指令的周期和能量消耗方面找到最佳配置。正如作者建议的那样,通过改变19个建筑参数,设计空间超过250亿亿个配置,这显然意味着只能考虑启发式搜索。因此,作者基于他们开发的用于自动设计空间探索的框架,提出了不同的自动DSE方法,这使他们只能评估上述巨大设计空间的2500种配置!实验结果表明,考虑到提出的多目标方法,它们的自动DSE提供了比以前的手动DSE方法更好的配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号