首页> 外文期刊>Computers & Digital Techniques, IET >Energy estimation models for video decoders: reconfigurable video coding-CAL case-study
【24h】

Energy estimation models for video decoders: reconfigurable video coding-CAL case-study

机译:视频解码器的能量估计模型:可重构视频编码-CAL案例研究

获取原文
获取原文并翻译 | 示例

摘要

In this study, a platform-independent energy estimation methodology is proposed to estimate the energy consumption of reconfigurable video coding (RVC)-CAL video codec specifications. This methodology is based on the performance monitoring counters (PMCs) of embedded platforms and demonstrates its portability, simplicity and accuracy for on-line estimation. It has two off-line procedure stages: the former, which automatically identifies the most appropriate PMCs with no specific detailed knowledge of the employed platform, and the latter, which trains the model using either a linear regression or a multivariable adaptive regression splines (MARS) method. Experimenting on an RVC-CAL decoder, the proposed PMC-driven model can achieve an average estimation error <;10%. In addition, the maximal model computation overhead is 4.04%. The results show that the training video sequence has significant influence on the model accuracy. An experimental metric is introduced to achieve more stable accurate models based on a combination of training sequences. Furthermore, a comparison demonstrates better predictive ability of MARS techniques in scenarios with multi-core platforms. Finally, the experimental results show a good potential of energy efficiency improvement when the estimation model is combined into the RVC framework. In two different scenarios, the battery lifetime is increased 5.16% and 20.9%, respectively.
机译:在这项研究中,提出了一种与平台无关的能量估计方法,以估计可重新配置视频编码(RVC)-CAL视频编解码器规范的能耗。这种方法基于嵌入式平台的性能监视计数器(PMC),并演示了其可移植性,简单性和在线估计的准确性。它具有两个离线过程阶段:前者可在不具体了解所使用平台的情况下自动识别最合适的PMC,而后者则使用线性回归或多变量自适应回归样条(MARS)训练模型。 ) 方法。在RVC-CAL解码器上进行实验,提出的PMC驱动模型可以实现平均估计误差<; 10%。另外,最大的模型计算开销为4.04%。结果表明,训练视频序列对模型精度有重要影响。引入实验指标,以基于训练序列的组合来实现更稳定的准确模型。此外,比较表明在具有多核平台的方案中,MARS技术具有更好的预测能力。最后,实验结果表明,当将估算模型组合到RVC框架中时,可以提高能源效率。在两种不同的情况下,电池寿命分别增加了5.16%和20.9%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号