首页> 外文期刊>Computers and Geotechnics >Simulations of large-scale triaxial shear tests on ballast aggregates using sensing mechanism and real-time (SMART) computing
【24h】

Simulations of large-scale triaxial shear tests on ballast aggregates using sensing mechanism and real-time (SMART) computing

机译:利用传感机制和实时(SMART)计算对压载骨料进行大规模三轴剪切试验的模拟

获取原文
获取原文并翻译 | 示例

摘要

Since Discrete Element Method (DEM) was first introduced for modeling micromechanical interactions of granular materials back in late 1970s, significant progress has been made to improve the performance of DEM algorithms. For example, a variety of approaches have been developed to simulate triaxial tests using DEM to better understand the fundamental mechanical behavior of granular materials. Nevertheless, potential error accumulation over the necessary large number of timesteps as a part of the explicit time integration may undermine the simulation accuracy. This paper presents the development, implementation and validation of a computing scheme that is based on real-time data fusion between a sensing mechanism and real time (SMART) computing. This computing framework consists of: (1) real-time data acquisition of particle kinematics through a wireless instrumentation called "SmartRocks" that are embedded at discrete locations in a granular assembly, and (2) a built-in data-fusion-based algorithm using the Kalman filter to integrate the prediction generated by DEM and the measurements reported by "SmartRocks." To evaluate the performance of the SMART computing algorithm, laboratory large-scale triaxial tests on ballast specimens were conducted and the results were compared to traditional DEM-only and SMART computing simulations. It is concluded the SMART computing improved the simulation accuracy over the DEM-only simulations in terms of the deviatoric stress vs. axial strain, volumetric strain vs. axial strain, and final deformed specimen shape, and hence can be used to model large-scale triaxial tests with high fidelity.
机译:自1970年代末首次引入离散元方法(DEM)来对颗粒材料的微机械相互作用进行建模以来,在改善DEM算法的性能方面取得了重大进展。例如,已开发出多种方法来模拟使用DEM的三轴测试,以更好地理解颗粒材料的基本机械性能。然而,作为显式时间积分的一部分,在必要的大量时间步长上潜在的误差累积可能会破坏仿真精度。本文介绍了一种基于传感机制和实时(SMART)计算之间的实时数据融合的计算方案的开发,实现和验证。该计算框架包括:(1)通过称为“ SmartRocks”的无线仪器实时获取粒子运动学的数据,该仪器嵌入颗粒组件中的不连续位置;(2)内置数据融合- Kalman滤波器的基于CIM的算法,将DEM生成的预测与“ SmartRocks”报告的测量结果进行集成。为了评估SMART计算算法的性能,对压载物样本进行了实验室大规模三轴测试,并对结果进行了比较到传统的仅DEM和SMART计算仿真。结论是,SMART计算在偏应力与轴向应变,体积应变与轴向应变以及最终变形的样本形状方面比仅对DEM的模拟提高了模拟精度,因此可用于大规模建模高保真三轴测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号